MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem3 Structured version   Visualization version   GIF version

Theorem voliunlem3 24716
Description: Lemma for voliun 24718. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
voliunlem3.1 𝑆 = seq1( + , 𝐺)
voliunlem3.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
voliunlem3.4 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
Assertion
Ref Expression
voliunlem3 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝑥,𝑆   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝑆(𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem3
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . 4 (𝜑𝐹:ℕ⟶dom vol)
2 voliunlem.5 . . . 4 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
3 voliunlem.6 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
41, 2, 3voliunlem2 24715 . . 3 (𝜑 ran 𝐹 ∈ dom vol)
5 mblvol 24694 . . 3 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
64, 5syl 17 . 2 (𝜑 → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
71frnd 6608 . . . . . 6 (𝜑 → ran 𝐹 ⊆ dom vol)
8 mblss 24695 . . . . . . . 8 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
9 reex 10962 . . . . . . . . 9 ℝ ∈ V
109elpw2 5269 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
118, 10sylibr 233 . . . . . . 7 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
1211ssriv 3925 . . . . . 6 dom vol ⊆ 𝒫 ℝ
137, 12sstrdi 3933 . . . . 5 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
14 sspwuni 5029 . . . . 5 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
1513, 14sylib 217 . . . 4 (𝜑 ran 𝐹 ⊆ ℝ)
16 ovolcl 24642 . . . 4 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
1715, 16syl 17 . . 3 (𝜑 → (vol*‘ ran 𝐹) ∈ ℝ*)
18 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
19 1zzd 12351 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
20 2fveq3 6779 . . . . . . . . . . 11 (𝑛 = 𝑘 → (vol‘(𝐹𝑛)) = (vol‘(𝐹𝑘)))
21 voliunlem3.2 . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
22 fvex 6787 . . . . . . . . . . 11 (vol‘(𝐹𝑘)) ∈ V
2320, 21, 22fvmpt 6875 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐺𝑘) = (vol‘(𝐹𝑘)))
2423adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (vol‘(𝐹𝑘)))
25 voliunlem3.4 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
26 2fveq3 6779 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑘)))
2726eleq1d 2823 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑘)) ∈ ℝ))
2827rspccva 3560 . . . . . . . . . 10 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
2925, 28sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
3024, 29eqeltrd 2839 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3118, 19, 30serfre 13752 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
32 voliunlem3.1 . . . . . . . 8 𝑆 = seq1( + , 𝐺)
3332feq1i 6591 . . . . . . 7 (𝑆:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3431, 33sylibr 233 . . . . . 6 (𝜑𝑆:ℕ⟶ℝ)
3534frnd 6608 . . . . 5 (𝜑 → ran 𝑆 ⊆ ℝ)
36 ressxr 11019 . . . . 5 ℝ ⊆ ℝ*
3735, 36sstrdi 3933 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ*)
38 supxrcl 13049 . . . 4 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
3937, 38syl 17 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
40 eqid 2738 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
41 eqid 2738 . . . . 5 (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))
421ffvelrnda 6961 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
43 mblss 24695 . . . . . 6 ((𝐹𝑛) ∈ dom vol → (𝐹𝑛) ⊆ ℝ)
4442, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ℝ)
45 mblvol 24694 . . . . . . 7 ((𝐹𝑛) ∈ dom vol → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
4642, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
47 2fveq3 6779 . . . . . . . . 9 (𝑖 = 𝑛 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑛)))
4847eleq1d 2823 . . . . . . . 8 (𝑖 = 𝑛 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑛)) ∈ ℝ))
4948rspccva 3560 . . . . . . 7 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
5025, 49sylan 580 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
5146, 50eqeltrrd 2840 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol*‘(𝐹𝑛)) ∈ ℝ)
5240, 41, 44, 51ovoliun 24669 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) ≤ sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ))
531ffnd 6601 . . . . . 6 (𝜑𝐹 Fn ℕ)
54 fniunfv 7120 . . . . . 6 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5553, 54syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5655fveq2d 6778 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) = (vol*‘ ran 𝐹))
5746mpteq2dva 5174 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
5821, 57eqtrid 2790 . . . . . . . 8 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
5958seqeq3d 13729 . . . . . . 7 (𝜑 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))))
6032, 59eqtr2id 2791 . . . . . 6 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = 𝑆)
6160rneqd 5847 . . . . 5 (𝜑 → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = ran 𝑆)
6261supeq1d 9205 . . . 4 (𝜑 → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
6352, 56, 623brtr3d 5105 . . 3 (𝜑 → (vol*‘ ran 𝐹) ≤ sup(ran 𝑆, ℝ*, < ))
64 ovolge0 24645 . . . . . . . . . 10 ( ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ ran 𝐹))
6515, 64syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘ ran 𝐹))
66 mnflt0 12861 . . . . . . . . . 10 -∞ < 0
67 mnfxr 11032 . . . . . . . . . . 11 -∞ ∈ ℝ*
68 0xr 11022 . . . . . . . . . . 11 0 ∈ ℝ*
69 xrltletr 12891 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
7067, 68, 69mp3an12 1450 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
7166, 70mpani 693 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → (0 ≤ (vol*‘ ran 𝐹) → -∞ < (vol*‘ ran 𝐹)))
7217, 65, 71sylc 65 . . . . . . . 8 (𝜑 → -∞ < (vol*‘ ran 𝐹))
73 xrrebnd 12902 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
7417, 73syl 17 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
759elpw2 5269 . . . . . . . . . . . 12 ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
7615, 75sylibr 233 . . . . . . . . . . 11 (𝜑 ran 𝐹 ∈ 𝒫 ℝ)
77 simpl 483 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → 𝑥 = ran 𝐹)
7877sseq1d 3952 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (𝑥 ⊆ ℝ ↔ ran 𝐹 ⊆ ℝ))
7977fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
8079eleq1d 2823 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘ ran 𝐹) ∈ ℝ))
81 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → 𝑥 = ran 𝐹)
8281ineq1d 4145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = ( ran 𝐹 ∩ (𝐹𝑛)))
83 fnfvelrn 6958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
8453, 83sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
85 elssuni 4871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
8786adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
88 sseqin2 4149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑛) ⊆ ran 𝐹 ↔ ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
8987, 88sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
9082, 89eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = (𝐹𝑛))
9190fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝐹𝑛)))
9246adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
9391, 92eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol‘(𝐹𝑛)))
9493mpteq2dva 5174 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ran 𝐹𝜑) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
9594adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
9695, 3, 213eqtr4g 2803 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → 𝐻 = 𝐺)
9796seqeq3d 13729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = seq1( + , 𝐺))
9897, 32eqtr4di 2796 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = 𝑆)
9998fveq1d 6776 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (seq1( + , 𝐻)‘𝑘) = (𝑆𝑘))
100 difeq1 4050 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ( ran 𝐹 ran 𝐹))
101 difid 4304 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ran 𝐹 ran 𝐹) = ∅
102100, 101eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ∅)
103102fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = (vol*‘∅))
104 ovol0 24657 . . . . . . . . . . . . . . . . . . . . . 22 (vol*‘∅) = 0
105103, 104eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = 0)
106105adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘(𝑥 ran 𝐹)) = 0)
10799, 106oveq12d 7293 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = ((𝑆𝑘) + 0))
10834ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
109108adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℝ)
110109recnd 11003 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℂ)
111110addid1d 11175 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((𝑆𝑘) + 0) = (𝑆𝑘))
112107, 111eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = (𝑆𝑘))
113 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝐹 → (vol*‘𝑥) = (vol*‘ ran 𝐹))
114113adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
115112, 114breq12d 5087 . . . . . . . . . . . . . . . . 17 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
116115expr 457 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (𝑘 ∈ ℕ → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
117116pm5.74d 272 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
11880, 117imbi12d 345 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))) ↔ ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
11978, 118imbi12d 345 . . . . . . . . . . . . 13 ((𝑥 = ran 𝐹𝜑) → ((𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))) ↔ ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
120119pm5.74da 801 . . . . . . . . . . . 12 (𝑥 = ran 𝐹 → ((𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))) ↔ (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))))
12113ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
12223ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
123 simp2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
124 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
125121, 122, 3, 123, 124voliunlem1 24714 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
1261253exp1 1351 . . . . . . . . . . . 12 (𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))))
127120, 126vtoclg 3505 . . . . . . . . . . 11 ( ran 𝐹 ∈ 𝒫 ℝ → (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
12876, 127mpcom 38 . . . . . . . . . 10 (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
12915, 128mpd 15 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13074, 129sylbird 259 . . . . . . . 8 (𝜑 → ((-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞) → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13172, 130mpand 692 . . . . . . 7 (𝜑 → ((vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
132 nltpnft 12898 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
13317, 132syl 17 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
134 rexr 11021 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ → (𝑆𝑘) ∈ ℝ*)
135 pnfge 12866 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ* → (𝑆𝑘) ≤ +∞)
136108, 134, 1353syl 18 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ +∞)
137136ex 413 . . . . . . . . 9 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞))
138 breq2 5078 . . . . . . . . . 10 ((vol*‘ ran 𝐹) = +∞ → ((𝑆𝑘) ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ +∞))
139138imbi2d 341 . . . . . . . . 9 ((vol*‘ ran 𝐹) = +∞ → ((𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞)))
140137, 139syl5ibrcom 246 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
141133, 140sylbird 259 . . . . . . 7 (𝜑 → (¬ (vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
142131, 141pm2.61d 179 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
143142ralrimiv 3102 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))
14434ffnd 6601 . . . . . 6 (𝜑𝑆 Fn ℕ)
145 breq1 5077 . . . . . . 7 (𝑧 = (𝑆𝑘) → (𝑧 ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
146145ralrn 6964 . . . . . 6 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
147144, 146syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
148143, 147mpbird 256 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹))
149 supxrleub 13060 . . . . 5 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
15037, 17, 149syl2anc 584 . . . 4 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
151148, 150mpbird 256 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹))
15217, 39, 63, 151xrletrid 12889 . 2 (𝜑 → (vol*‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
1536, 152eqtrd 2778 1 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   ciun 4924  Disj wdisj 5039   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  cn 11973  seqcseq 13721  vol*covol 24626  volcvol 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629
This theorem is referenced by:  voliun  24718
  Copyright terms: Public domain W3C validator