MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem3 Structured version   Visualization version   GIF version

Theorem voliunlem3 25460
Description: Lemma for voliun 25462. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
voliunlem3.1 𝑆 = seq1( + , 𝐺)
voliunlem3.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
voliunlem3.4 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
Assertion
Ref Expression
voliunlem3 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝑥,𝑆   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝑆(𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem3
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . 4 (𝜑𝐹:ℕ⟶dom vol)
2 voliunlem.5 . . . 4 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
3 voliunlem.6 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
41, 2, 3voliunlem2 25459 . . 3 (𝜑 ran 𝐹 ∈ dom vol)
5 mblvol 25438 . . 3 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
64, 5syl 17 . 2 (𝜑 → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
71frnd 6699 . . . . . 6 (𝜑 → ran 𝐹 ⊆ dom vol)
8 mblss 25439 . . . . . . . 8 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
9 reex 11166 . . . . . . . . 9 ℝ ∈ V
109elpw2 5292 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
118, 10sylibr 234 . . . . . . 7 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
1211ssriv 3953 . . . . . 6 dom vol ⊆ 𝒫 ℝ
137, 12sstrdi 3962 . . . . 5 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
14 sspwuni 5067 . . . . 5 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
1513, 14sylib 218 . . . 4 (𝜑 ran 𝐹 ⊆ ℝ)
16 ovolcl 25386 . . . 4 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
1715, 16syl 17 . . 3 (𝜑 → (vol*‘ ran 𝐹) ∈ ℝ*)
18 nnuz 12843 . . . . . . . 8 ℕ = (ℤ‘1)
19 1zzd 12571 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
20 2fveq3 6866 . . . . . . . . . . 11 (𝑛 = 𝑘 → (vol‘(𝐹𝑛)) = (vol‘(𝐹𝑘)))
21 voliunlem3.2 . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
22 fvex 6874 . . . . . . . . . . 11 (vol‘(𝐹𝑘)) ∈ V
2320, 21, 22fvmpt 6971 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐺𝑘) = (vol‘(𝐹𝑘)))
2423adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (vol‘(𝐹𝑘)))
25 voliunlem3.4 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
26 2fveq3 6866 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑘)))
2726eleq1d 2814 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑘)) ∈ ℝ))
2827rspccva 3590 . . . . . . . . . 10 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
2925, 28sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
3024, 29eqeltrd 2829 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3118, 19, 30serfre 14003 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
32 voliunlem3.1 . . . . . . . 8 𝑆 = seq1( + , 𝐺)
3332feq1i 6682 . . . . . . 7 (𝑆:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3431, 33sylibr 234 . . . . . 6 (𝜑𝑆:ℕ⟶ℝ)
3534frnd 6699 . . . . 5 (𝜑 → ran 𝑆 ⊆ ℝ)
36 ressxr 11225 . . . . 5 ℝ ⊆ ℝ*
3735, 36sstrdi 3962 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ*)
38 supxrcl 13282 . . . 4 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
3937, 38syl 17 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
40 eqid 2730 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
41 eqid 2730 . . . . 5 (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))
421ffvelcdmda 7059 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
43 mblss 25439 . . . . . 6 ((𝐹𝑛) ∈ dom vol → (𝐹𝑛) ⊆ ℝ)
4442, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ℝ)
45 mblvol 25438 . . . . . . 7 ((𝐹𝑛) ∈ dom vol → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
4642, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
47 2fveq3 6866 . . . . . . . . 9 (𝑖 = 𝑛 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑛)))
4847eleq1d 2814 . . . . . . . 8 (𝑖 = 𝑛 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑛)) ∈ ℝ))
4948rspccva 3590 . . . . . . 7 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
5025, 49sylan 580 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
5146, 50eqeltrrd 2830 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol*‘(𝐹𝑛)) ∈ ℝ)
5240, 41, 44, 51ovoliun 25413 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) ≤ sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ))
531ffnd 6692 . . . . . 6 (𝜑𝐹 Fn ℕ)
54 fniunfv 7224 . . . . . 6 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5553, 54syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5655fveq2d 6865 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) = (vol*‘ ran 𝐹))
5746mpteq2dva 5203 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
5821, 57eqtrid 2777 . . . . . . . 8 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
5958seqeq3d 13981 . . . . . . 7 (𝜑 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))))
6032, 59eqtr2id 2778 . . . . . 6 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = 𝑆)
6160rneqd 5905 . . . . 5 (𝜑 → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = ran 𝑆)
6261supeq1d 9404 . . . 4 (𝜑 → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
6352, 56, 623brtr3d 5141 . . 3 (𝜑 → (vol*‘ ran 𝐹) ≤ sup(ran 𝑆, ℝ*, < ))
64 ovolge0 25389 . . . . . . . . . 10 ( ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ ran 𝐹))
6515, 64syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘ ran 𝐹))
66 mnflt0 13092 . . . . . . . . . 10 -∞ < 0
67 mnfxr 11238 . . . . . . . . . . 11 -∞ ∈ ℝ*
68 0xr 11228 . . . . . . . . . . 11 0 ∈ ℝ*
69 xrltletr 13124 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
7067, 68, 69mp3an12 1453 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
7166, 70mpani 696 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → (0 ≤ (vol*‘ ran 𝐹) → -∞ < (vol*‘ ran 𝐹)))
7217, 65, 71sylc 65 . . . . . . . 8 (𝜑 → -∞ < (vol*‘ ran 𝐹))
73 xrrebnd 13135 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
7417, 73syl 17 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
759elpw2 5292 . . . . . . . . . . . 12 ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
7615, 75sylibr 234 . . . . . . . . . . 11 (𝜑 ran 𝐹 ∈ 𝒫 ℝ)
77 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → 𝑥 = ran 𝐹)
7877sseq1d 3981 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (𝑥 ⊆ ℝ ↔ ran 𝐹 ⊆ ℝ))
7977fveq2d 6865 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
8079eleq1d 2814 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘ ran 𝐹) ∈ ℝ))
81 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → 𝑥 = ran 𝐹)
8281ineq1d 4185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = ( ran 𝐹 ∩ (𝐹𝑛)))
83 fnfvelrn 7055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
8453, 83sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
85 elssuni 4904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
8786adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
88 sseqin2 4189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑛) ⊆ ran 𝐹 ↔ ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
8987, 88sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
9082, 89eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = (𝐹𝑛))
9190fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝐹𝑛)))
9246adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
9391, 92eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol‘(𝐹𝑛)))
9493mpteq2dva 5203 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ran 𝐹𝜑) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
9594adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
9695, 3, 213eqtr4g 2790 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → 𝐻 = 𝐺)
9796seqeq3d 13981 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = seq1( + , 𝐺))
9897, 32eqtr4di 2783 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = 𝑆)
9998fveq1d 6863 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (seq1( + , 𝐻)‘𝑘) = (𝑆𝑘))
100 difeq1 4085 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ( ran 𝐹 ran 𝐹))
101 difid 4342 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ran 𝐹 ran 𝐹) = ∅
102100, 101eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ∅)
103102fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = (vol*‘∅))
104 ovol0 25401 . . . . . . . . . . . . . . . . . . . . . 22 (vol*‘∅) = 0
105103, 104eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = 0)
106105adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘(𝑥 ran 𝐹)) = 0)
10799, 106oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = ((𝑆𝑘) + 0))
10834ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
109108adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℝ)
110109recnd 11209 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℂ)
111110addridd 11381 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((𝑆𝑘) + 0) = (𝑆𝑘))
112107, 111eqtrd 2765 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = (𝑆𝑘))
113 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝐹 → (vol*‘𝑥) = (vol*‘ ran 𝐹))
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
115112, 114breq12d 5123 . . . . . . . . . . . . . . . . 17 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
116115expr 456 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (𝑘 ∈ ℕ → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
117116pm5.74d 273 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
11880, 117imbi12d 344 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))) ↔ ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
11978, 118imbi12d 344 . . . . . . . . . . . . 13 ((𝑥 = ran 𝐹𝜑) → ((𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))) ↔ ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
120119pm5.74da 803 . . . . . . . . . . . 12 (𝑥 = ran 𝐹 → ((𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))) ↔ (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))))
12113ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
12223ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
123 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
124 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
125121, 122, 3, 123, 124voliunlem1 25458 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
1261253exp1 1353 . . . . . . . . . . . 12 (𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))))
127120, 126vtoclg 3523 . . . . . . . . . . 11 ( ran 𝐹 ∈ 𝒫 ℝ → (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
12876, 127mpcom 38 . . . . . . . . . 10 (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
12915, 128mpd 15 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13074, 129sylbird 260 . . . . . . . 8 (𝜑 → ((-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞) → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13172, 130mpand 695 . . . . . . 7 (𝜑 → ((vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
132 nltpnft 13131 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
13317, 132syl 17 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
134 rexr 11227 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ → (𝑆𝑘) ∈ ℝ*)
135 pnfge 13097 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ* → (𝑆𝑘) ≤ +∞)
136108, 134, 1353syl 18 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ +∞)
137136ex 412 . . . . . . . . 9 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞))
138 breq2 5114 . . . . . . . . . 10 ((vol*‘ ran 𝐹) = +∞ → ((𝑆𝑘) ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ +∞))
139138imbi2d 340 . . . . . . . . 9 ((vol*‘ ran 𝐹) = +∞ → ((𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞)))
140137, 139syl5ibrcom 247 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
141133, 140sylbird 260 . . . . . . 7 (𝜑 → (¬ (vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
142131, 141pm2.61d 179 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
143142ralrimiv 3125 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))
14434ffnd 6692 . . . . . 6 (𝜑𝑆 Fn ℕ)
145 breq1 5113 . . . . . . 7 (𝑧 = (𝑆𝑘) → (𝑧 ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
146145ralrn 7063 . . . . . 6 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
147144, 146syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
148143, 147mpbird 257 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹))
149 supxrleub 13293 . . . . 5 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
15037, 17, 149syl2anc 584 . . . 4 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
151148, 150mpbird 257 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹))
15217, 39, 63, 151xrletrid 13122 . 2 (𝜑 → (vol*‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
1536, 152eqtrd 2765 1 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cn 12193  seqcseq 13973  vol*covol 25370  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373
This theorem is referenced by:  voliun  25462
  Copyright terms: Public domain W3C validator