MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem3 Structured version   Visualization version   GIF version

Theorem voliunlem3 24145
Description: Lemma for voliun 24147. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
voliunlem3.1 𝑆 = seq1( + , 𝐺)
voliunlem3.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
voliunlem3.4 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
Assertion
Ref Expression
voliunlem3 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑖,𝑛,𝑥,𝐹   𝑥,𝑆   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑖)   𝑆(𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)   𝐻(𝑥,𝑖,𝑛)

Proof of Theorem voliunlem3
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 voliunlem.3 . . . 4 (𝜑𝐹:ℕ⟶dom vol)
2 voliunlem.5 . . . 4 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
3 voliunlem.6 . . . 4 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛))))
41, 2, 3voliunlem2 24144 . . 3 (𝜑 ran 𝐹 ∈ dom vol)
5 mblvol 24123 . . 3 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
64, 5syl 17 . 2 (𝜑 → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
71frnd 6514 . . . . . 6 (𝜑 → ran 𝐹 ⊆ dom vol)
8 mblss 24124 . . . . . . . 8 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
9 reex 10620 . . . . . . . . 9 ℝ ∈ V
109elpw2 5239 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ)
118, 10sylibr 236 . . . . . . 7 (𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ)
1211ssriv 3969 . . . . . 6 dom vol ⊆ 𝒫 ℝ
137, 12sstrdi 3977 . . . . 5 (𝜑 → ran 𝐹 ⊆ 𝒫 ℝ)
14 sspwuni 5013 . . . . 5 (ran 𝐹 ⊆ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
1513, 14sylib 220 . . . 4 (𝜑 ran 𝐹 ⊆ ℝ)
16 ovolcl 24071 . . . 4 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
1715, 16syl 17 . . 3 (𝜑 → (vol*‘ ran 𝐹) ∈ ℝ*)
18 nnuz 12273 . . . . . . . 8 ℕ = (ℤ‘1)
19 1zzd 12005 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
20 2fveq3 6668 . . . . . . . . . . 11 (𝑛 = 𝑘 → (vol‘(𝐹𝑛)) = (vol‘(𝐹𝑘)))
21 voliunlem3.2 . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛)))
22 fvex 6676 . . . . . . . . . . 11 (vol‘(𝐹𝑘)) ∈ V
2320, 21, 22fvmpt 6761 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐺𝑘) = (vol‘(𝐹𝑘)))
2423adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (vol‘(𝐹𝑘)))
25 voliunlem3.4 . . . . . . . . . 10 (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ)
26 2fveq3 6668 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑘)))
2726eleq1d 2895 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑘)) ∈ ℝ))
2827rspccva 3620 . . . . . . . . . 10 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
2925, 28sylan 582 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹𝑘)) ∈ ℝ)
3024, 29eqeltrd 2911 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3118, 19, 30serfre 13391 . . . . . . 7 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
32 voliunlem3.1 . . . . . . . 8 𝑆 = seq1( + , 𝐺)
3332feq1i 6498 . . . . . . 7 (𝑆:ℕ⟶ℝ ↔ seq1( + , 𝐺):ℕ⟶ℝ)
3431, 33sylibr 236 . . . . . 6 (𝜑𝑆:ℕ⟶ℝ)
3534frnd 6514 . . . . 5 (𝜑 → ran 𝑆 ⊆ ℝ)
36 ressxr 10677 . . . . 5 ℝ ⊆ ℝ*
3735, 36sstrdi 3977 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ*)
38 supxrcl 12700 . . . 4 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
3937, 38syl 17 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
40 eqid 2819 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
41 eqid 2819 . . . . 5 (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))
421ffvelrnda 6844 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
43 mblss 24124 . . . . . 6 ((𝐹𝑛) ∈ dom vol → (𝐹𝑛) ⊆ ℝ)
4442, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ℝ)
45 mblvol 24123 . . . . . . 7 ((𝐹𝑛) ∈ dom vol → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
4642, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
47 2fveq3 6668 . . . . . . . . 9 (𝑖 = 𝑛 → (vol‘(𝐹𝑖)) = (vol‘(𝐹𝑛)))
4847eleq1d 2895 . . . . . . . 8 (𝑖 = 𝑛 → ((vol‘(𝐹𝑖)) ∈ ℝ ↔ (vol‘(𝐹𝑛)) ∈ ℝ))
4948rspccva 3620 . . . . . . 7 ((∀𝑖 ∈ ℕ (vol‘(𝐹𝑖)) ∈ ℝ ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
5025, 49sylan 582 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) ∈ ℝ)
5146, 50eqeltrrd 2912 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (vol*‘(𝐹𝑛)) ∈ ℝ)
5240, 41, 44, 51ovoliun 24098 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) ≤ sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ))
531ffnd 6508 . . . . . 6 (𝜑𝐹 Fn ℕ)
54 fniunfv 6998 . . . . . 6 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5553, 54syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
5655fveq2d 6667 . . . 4 (𝜑 → (vol*‘ 𝑛 ∈ ℕ (𝐹𝑛)) = (vol*‘ ran 𝐹))
5746mpteq2dva 5152 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
5821, 57syl5eq 2866 . . . . . . . 8 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛))))
5958seqeq3d 13369 . . . . . . 7 (𝜑 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))))
6032, 59syl5req 2867 . . . . . 6 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = 𝑆)
6160rneqd 5801 . . . . 5 (𝜑 → ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))) = ran 𝑆)
6261supeq1d 8902 . . . 4 (𝜑 → sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol*‘(𝐹𝑛)))), ℝ*, < ) = sup(ran 𝑆, ℝ*, < ))
6352, 56, 623brtr3d 5088 . . 3 (𝜑 → (vol*‘ ran 𝐹) ≤ sup(ran 𝑆, ℝ*, < ))
64 ovolge0 24074 . . . . . . . . . 10 ( ran 𝐹 ⊆ ℝ → 0 ≤ (vol*‘ ran 𝐹))
6515, 64syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘ ran 𝐹))
66 mnflt0 12512 . . . . . . . . . 10 -∞ < 0
67 mnfxr 10690 . . . . . . . . . . 11 -∞ ∈ ℝ*
68 0xr 10680 . . . . . . . . . . 11 0 ∈ ℝ*
69 xrltletr 12542 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
7067, 68, 69mp3an12 1445 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘ ran 𝐹)) → -∞ < (vol*‘ ran 𝐹)))
7166, 70mpani 694 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → (0 ≤ (vol*‘ ran 𝐹) → -∞ < (vol*‘ ran 𝐹)))
7217, 65, 71sylc 65 . . . . . . . 8 (𝜑 → -∞ < (vol*‘ ran 𝐹))
73 xrrebnd 12553 . . . . . . . . . 10 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
7417, 73syl 17 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ ↔ (-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞)))
759elpw2 5239 . . . . . . . . . . . 12 ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ)
7615, 75sylibr 236 . . . . . . . . . . 11 (𝜑 ran 𝐹 ∈ 𝒫 ℝ)
77 simpl 485 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → 𝑥 = ran 𝐹)
7877sseq1d 3996 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (𝑥 ⊆ ℝ ↔ ran 𝐹 ⊆ ℝ))
7977fveq2d 6667 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
8079eleq1d 2895 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘ ran 𝐹) ∈ ℝ))
81 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → 𝑥 = ran 𝐹)
8281ineq1d 4186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = ( ran 𝐹 ∩ (𝐹𝑛)))
83 fnfvelrn 6841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
8453, 83sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
85 elssuni 4859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
8786adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
88 sseqin2 4190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝑛) ⊆ ran 𝐹 ↔ ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
8987, 88sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → ( ran 𝐹 ∩ (𝐹𝑛)) = (𝐹𝑛))
9082, 89eqtrd 2854 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (𝑥 ∩ (𝐹𝑛)) = (𝐹𝑛))
9190fveq2d 6667 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol*‘(𝐹𝑛)))
9246adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol‘(𝐹𝑛)) = (vol*‘(𝐹𝑛)))
9391, 92eqtr4d 2857 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 = ran 𝐹𝜑) ∧ 𝑛 ∈ ℕ) → (vol*‘(𝑥 ∩ (𝐹𝑛))) = (vol‘(𝐹𝑛)))
9493mpteq2dva 5152 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ran 𝐹𝜑) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
9594adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹𝑛)))) = (𝑛 ∈ ℕ ↦ (vol‘(𝐹𝑛))))
9695, 3, 213eqtr4g 2879 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → 𝐻 = 𝐺)
9796seqeq3d 13369 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = seq1( + , 𝐺))
9897, 32syl6eqr 2872 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → seq1( + , 𝐻) = 𝑆)
9998fveq1d 6665 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (seq1( + , 𝐻)‘𝑘) = (𝑆𝑘))
100 difeq1 4090 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ( ran 𝐹 ran 𝐹))
101 difid 4328 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ran 𝐹 ran 𝐹) = ∅
102100, 101syl6eq 2870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ran 𝐹 → (𝑥 ran 𝐹) = ∅)
103102fveq2d 6667 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = (vol*‘∅))
104 ovol0 24086 . . . . . . . . . . . . . . . . . . . . . 22 (vol*‘∅) = 0
105103, 104syl6eq 2870 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ran 𝐹 → (vol*‘(𝑥 ran 𝐹)) = 0)
106105adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘(𝑥 ran 𝐹)) = 0)
10799, 106oveq12d 7166 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = ((𝑆𝑘) + 0))
10834ffvelrnda 6844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
109108adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℝ)
110109recnd 10661 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (𝑆𝑘) ∈ ℂ)
111110addid1d 10832 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((𝑆𝑘) + 0) = (𝑆𝑘))
112107, 111eqtrd 2854 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) = (𝑆𝑘))
113 fveq2 6663 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ran 𝐹 → (vol*‘𝑥) = (vol*‘ ran 𝐹))
114113adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (vol*‘𝑥) = (vol*‘ ran 𝐹))
115112, 114breq12d 5070 . . . . . . . . . . . . . . . . 17 ((𝑥 = ran 𝐹 ∧ (𝜑𝑘 ∈ ℕ)) → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
116115expr 459 . . . . . . . . . . . . . . . 16 ((𝑥 = ran 𝐹𝜑) → (𝑘 ∈ ℕ → (((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
117116pm5.74d 275 . . . . . . . . . . . . . . 15 ((𝑥 = ran 𝐹𝜑) → ((𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
11880, 117imbi12d 347 . . . . . . . . . . . . . 14 ((𝑥 = ran 𝐹𝜑) → (((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))) ↔ ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
11978, 118imbi12d 347 . . . . . . . . . . . . 13 ((𝑥 = ran 𝐹𝜑) → ((𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))) ↔ ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
120119pm5.74da 802 . . . . . . . . . . . 12 (𝑥 = ran 𝐹 → ((𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))))) ↔ (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))))
12113ad2ant1 1128 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
12223ad2ant1 1128 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
123 simp2 1132 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
124 simp3 1133 . . . . . . . . . . . . . 14 ((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
125121, 122, 3, 123, 124voliunlem1 24143 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥))
1261253exp1 1347 . . . . . . . . . . . 12 (𝜑 → (𝑥 ⊆ ℝ → ((vol*‘𝑥) ∈ ℝ → (𝑘 ∈ ℕ → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝑥 ran 𝐹))) ≤ (vol*‘𝑥)))))
127120, 126vtoclg 3566 . . . . . . . . . . 11 ( ran 𝐹 ∈ 𝒫 ℝ → (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))))
12876, 127mpcom 38 . . . . . . . . . 10 (𝜑 → ( ran 𝐹 ⊆ ℝ → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))))
12915, 128mpd 15 . . . . . . . . 9 (𝜑 → ((vol*‘ ran 𝐹) ∈ ℝ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13074, 129sylbird 262 . . . . . . . 8 (𝜑 → ((-∞ < (vol*‘ ran 𝐹) ∧ (vol*‘ ran 𝐹) < +∞) → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
13172, 130mpand 693 . . . . . . 7 (𝜑 → ((vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
132 nltpnft 12549 . . . . . . . . 9 ((vol*‘ ran 𝐹) ∈ ℝ* → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
13317, 132syl 17 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ ↔ ¬ (vol*‘ ran 𝐹) < +∞))
134 rexr 10679 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ → (𝑆𝑘) ∈ ℝ*)
135 pnfge 12517 . . . . . . . . . . 11 ((𝑆𝑘) ∈ ℝ* → (𝑆𝑘) ≤ +∞)
136108, 134, 1353syl 18 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑆𝑘) ≤ +∞)
137136ex 415 . . . . . . . . 9 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞))
138 breq2 5061 . . . . . . . . . 10 ((vol*‘ ran 𝐹) = +∞ → ((𝑆𝑘) ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ +∞))
139138imbi2d 343 . . . . . . . . 9 ((vol*‘ ran 𝐹) = +∞ → ((𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)) ↔ (𝑘 ∈ ℕ → (𝑆𝑘) ≤ +∞)))
140137, 139syl5ibrcom 249 . . . . . . . 8 (𝜑 → ((vol*‘ ran 𝐹) = +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
141133, 140sylbird 262 . . . . . . 7 (𝜑 → (¬ (vol*‘ ran 𝐹) < +∞ → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹))))
142131, 141pm2.61d 181 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ → (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
143142ralrimiv 3179 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹))
14434ffnd 6508 . . . . . 6 (𝜑𝑆 Fn ℕ)
145 breq1 5060 . . . . . . 7 (𝑧 = (𝑆𝑘) → (𝑧 ≤ (vol*‘ ran 𝐹) ↔ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
146145ralrn 6847 . . . . . 6 (𝑆 Fn ℕ → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
147144, 146syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹) ↔ ∀𝑘 ∈ ℕ (𝑆𝑘) ≤ (vol*‘ ran 𝐹)))
148143, 147mpbird 259 . . . 4 (𝜑 → ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹))
149 supxrleub 12711 . . . . 5 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran 𝐹) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
15037, 17, 149syl2anc 586 . . . 4 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹) ↔ ∀𝑧 ∈ ran 𝑆 𝑧 ≤ (vol*‘ ran 𝐹)))
151148, 150mpbird 259 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran 𝐹))
15217, 39, 63, 151xrletrid 12540 . 2 (𝜑 → (vol*‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
1536, 152eqtrd 2854 1 (𝜑 → (vol‘ ran 𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  cdif 3931  cin 3933  wss 3934  c0 4289  𝒫 cpw 4537   cuni 4830   ciun 4910  Disj wdisj 5022   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  supcsup 8896  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  cn 11630  seqcseq 13361  vol*covol 24055  volcvol 24056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-xmet 20530  df-met 20531  df-ovol 24057  df-vol 24058
This theorem is referenced by:  voliun  24147
  Copyright terms: Public domain W3C validator