![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgfvne | Structured version Visualization version GIF version |
Description: The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019.) |
Ref | Expression |
---|---|
symgbas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgbas.2 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
symgfvne | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symgbas.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbasf1o 19284 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) |
4 | f1of1 6832 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴–1-1→𝐴) | |
5 | eqeq2 2743 | . . . . . . . 8 ⊢ (𝑍 = (𝐹‘𝑋) → ((𝐹‘𝑌) = 𝑍 ↔ (𝐹‘𝑌) = (𝐹‘𝑋))) | |
6 | 5 | eqcoms 2739 | . . . . . . 7 ⊢ ((𝐹‘𝑋) = 𝑍 → ((𝐹‘𝑌) = 𝑍 ↔ (𝐹‘𝑌) = (𝐹‘𝑋))) |
7 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐹‘𝑋) = 𝑍) → ((𝐹‘𝑌) = 𝑍 ↔ (𝐹‘𝑌) = (𝐹‘𝑋))) |
8 | simp1 1135 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐴) | |
9 | simp3 1137 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) | |
10 | simp2 1136 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
11 | f1veqaeq 7259 | . . . . . . . 8 ⊢ ((𝐹:𝐴–1-1→𝐴 ∧ (𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋)) | |
12 | 8, 9, 10, 11 | syl12anc 834 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋)) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐹‘𝑋) = 𝑍) → ((𝐹‘𝑌) = (𝐹‘𝑋) → 𝑌 = 𝑋)) |
14 | 7, 13 | sylbid 239 | . . . . 5 ⊢ (((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐹‘𝑋) = 𝑍) → ((𝐹‘𝑌) = 𝑍 → 𝑌 = 𝑋)) |
15 | 14 | necon3d 2960 | . . . 4 ⊢ (((𝐹:𝐴–1-1→𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝐹‘𝑋) = 𝑍) → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍)) |
16 | 15 | 3exp1 1351 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐴 → (𝑋 ∈ 𝐴 → (𝑌 ∈ 𝐴 → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))))) |
17 | 3, 4, 16 | 3syl 18 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝑋 ∈ 𝐴 → (𝑌 ∈ 𝐴 → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))))) |
18 | 17 | 3imp 1110 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 –1-1→wf1 6540 –1-1-onto→wf1o 6542 ‘cfv 6543 Basecbs 17149 SymGrpcsymg 19276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-tset 17221 df-efmnd 18787 df-symg 19277 |
This theorem is referenced by: gsummatr01lem4 22381 |
Copyright terms: Public domain | W3C validator |