Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hstrlem3a | Structured version Visualization version GIF version |
Description: Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstrlem3a.1 | ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) |
Ref | Expression |
---|---|
hstrlem3a | ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆 ∈ CHStates) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhcl 29664 | . . . . 5 ⊢ ((𝑥 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → ((projℎ‘𝑥)‘𝑢) ∈ ℋ) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝑢 ∈ ℋ ∧ 𝑥 ∈ Cℋ ) → ((projℎ‘𝑥)‘𝑢) ∈ ℋ) |
3 | 2 | adantlr 711 | . . 3 ⊢ (((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) ∧ 𝑥 ∈ Cℋ ) → ((projℎ‘𝑥)‘𝑢) ∈ ℋ) |
4 | hstrlem3a.1 | . . 3 ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) | |
5 | 3, 4 | fmptd 6970 | . 2 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆: Cℋ ⟶ ℋ) |
6 | helch 29506 | . . . . 5 ⊢ ℋ ∈ Cℋ | |
7 | 4 | hstrlem2 30522 | . . . . 5 ⊢ ( ℋ ∈ Cℋ → (𝑆‘ ℋ) = ((projℎ‘ ℋ)‘𝑢)) |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (𝑆‘ ℋ) = ((projℎ‘ ℋ)‘𝑢) |
9 | 8 | fveq2i 6759 | . . 3 ⊢ (normℎ‘(𝑆‘ ℋ)) = (normℎ‘((projℎ‘ ℋ)‘𝑢)) |
10 | pjch1 29933 | . . . . 5 ⊢ (𝑢 ∈ ℋ → ((projℎ‘ ℋ)‘𝑢) = 𝑢) | |
11 | 10 | fveq2d 6760 | . . . 4 ⊢ (𝑢 ∈ ℋ → (normℎ‘((projℎ‘ ℋ)‘𝑢)) = (normℎ‘𝑢)) |
12 | id 22 | . . . 4 ⊢ ((normℎ‘𝑢) = 1 → (normℎ‘𝑢) = 1) | |
13 | 11, 12 | sylan9eq 2799 | . . 3 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (normℎ‘((projℎ‘ ℋ)‘𝑢)) = 1) |
14 | 9, 13 | syl5eq 2791 | . 2 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (normℎ‘(𝑆‘ ℋ)) = 1) |
15 | 4 | hstrlem2 30522 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ Cℋ → (𝑆‘𝑧) = ((projℎ‘𝑧)‘𝑢)) |
16 | 4 | hstrlem2 30522 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ Cℋ → (𝑆‘𝑤) = ((projℎ‘𝑤)‘𝑢)) |
17 | 15, 16 | oveqan12d 7274 | . . . . . . . . . . 11 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ) → ((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = (((projℎ‘𝑧)‘𝑢) ·ih ((projℎ‘𝑤)‘𝑢))) |
18 | 17 | 3adant3 1130 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → ((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = (((projℎ‘𝑧)‘𝑢) ·ih ((projℎ‘𝑤)‘𝑢))) |
19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = (((projℎ‘𝑧)‘𝑢) ·ih ((projℎ‘𝑤)‘𝑢))) |
20 | pjoi0 29980 | . . . . . . . . 9 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (((projℎ‘𝑧)‘𝑢) ·ih ((projℎ‘𝑤)‘𝑢)) = 0) | |
21 | 19, 20 | eqtrd 2778 | . . . . . . . 8 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0) |
22 | pjcjt2 29955 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢) = (((projℎ‘𝑧)‘𝑢) +ℎ ((projℎ‘𝑤)‘𝑢)))) | |
23 | 22 | imp 406 | . . . . . . . . 9 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢) = (((projℎ‘𝑧)‘𝑢) +ℎ ((projℎ‘𝑤)‘𝑢))) |
24 | chjcl 29620 | . . . . . . . . . . . 12 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ) → (𝑧 ∨ℋ 𝑤) ∈ Cℋ ) | |
25 | 4 | hstrlem2 30522 | . . . . . . . . . . . 12 ⊢ ((𝑧 ∨ℋ 𝑤) ∈ Cℋ → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢)) |
26 | 24, 25 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢)) |
27 | 26 | 3adant3 1130 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢)) |
28 | 27 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((projℎ‘(𝑧 ∨ℋ 𝑤))‘𝑢)) |
29 | 15, 16 | oveqan12d 7274 | . . . . . . . . . . 11 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ) → ((𝑆‘𝑧) +ℎ (𝑆‘𝑤)) = (((projℎ‘𝑧)‘𝑢) +ℎ ((projℎ‘𝑤)‘𝑢))) |
30 | 29 | 3adant3 1130 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) → ((𝑆‘𝑧) +ℎ (𝑆‘𝑤)) = (((projℎ‘𝑧)‘𝑢) +ℎ ((projℎ‘𝑤)‘𝑢))) |
31 | 30 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆‘𝑧) +ℎ (𝑆‘𝑤)) = (((projℎ‘𝑧)‘𝑢) +ℎ ((projℎ‘𝑤)‘𝑢))) |
32 | 23, 28, 31 | 3eqtr4d 2788 | . . . . . . . 8 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤))) |
33 | 21, 32 | jca 511 | . . . . . . 7 ⊢ (((𝑧 ∈ Cℋ ∧ 𝑤 ∈ Cℋ ∧ 𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤)))) |
34 | 33 | 3exp1 1350 | . . . . . 6 ⊢ (𝑧 ∈ Cℋ → (𝑤 ∈ Cℋ → (𝑢 ∈ ℋ → (𝑧 ⊆ (⊥‘𝑤) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤))))))) |
35 | 34 | com3r 87 | . . . . 5 ⊢ (𝑢 ∈ ℋ → (𝑧 ∈ Cℋ → (𝑤 ∈ Cℋ → (𝑧 ⊆ (⊥‘𝑤) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤))))))) |
36 | 35 | adantr 480 | . . . 4 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑧 ∈ Cℋ → (𝑤 ∈ Cℋ → (𝑧 ⊆ (⊥‘𝑤) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤))))))) |
37 | 36 | ralrimdv 3111 | . . 3 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑧 ∈ Cℋ → ∀𝑤 ∈ Cℋ (𝑧 ⊆ (⊥‘𝑤) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤)))))) |
38 | 37 | ralrimiv 3106 | . 2 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → ∀𝑧 ∈ Cℋ ∀𝑤 ∈ Cℋ (𝑧 ⊆ (⊥‘𝑤) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤))))) |
39 | ishst 30477 | . 2 ⊢ (𝑆 ∈ CHStates ↔ (𝑆: Cℋ ⟶ ℋ ∧ (normℎ‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑧 ∈ Cℋ ∀𝑤 ∈ Cℋ (𝑧 ⊆ (⊥‘𝑤) → (((𝑆‘𝑧) ·ih (𝑆‘𝑤)) = 0 ∧ (𝑆‘(𝑧 ∨ℋ 𝑤)) = ((𝑆‘𝑧) +ℎ (𝑆‘𝑤)))))) | |
40 | 5, 14, 38, 39 | syl3anbrc 1341 | 1 ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆 ∈ CHStates) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ℋchba 29182 +ℎ cva 29183 ·ih csp 29185 normℎcno 29186 Cℋ cch 29192 ⊥cort 29193 ∨ℋ chj 29196 projℎcpjh 29200 CHStateschst 29226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-shs 29571 df-chj 29573 df-pjh 29658 df-hst 30475 |
This theorem is referenced by: hstrlem3 30524 |
Copyright terms: Public domain | W3C validator |