HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstrlem3a Structured version   Visualization version   GIF version

Theorem hstrlem3a 32292
Description: Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
hstrlem3a.1 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
Assertion
Ref Expression
hstrlem3a ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ CHStates)
Distinct variable group:   𝑥,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑢)

Proof of Theorem hstrlem3a
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjhcl 31433 . . . . 5 ((𝑥C𝑢 ∈ ℋ) → ((proj𝑥)‘𝑢) ∈ ℋ)
21ancoms 458 . . . 4 ((𝑢 ∈ ℋ ∧ 𝑥C ) → ((proj𝑥)‘𝑢) ∈ ℋ)
32adantlr 714 . . 3 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((proj𝑥)‘𝑢) ∈ ℋ)
4 hstrlem3a.1 . . 3 𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))
53, 4fmptd 7148 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆: C ⟶ ℋ)
6 helch 31275 . . . . 5 ℋ ∈ C
74hstrlem2 32291 . . . . 5 ( ℋ ∈ C → (𝑆‘ ℋ) = ((proj‘ ℋ)‘𝑢))
86, 7ax-mp 5 . . . 4 (𝑆‘ ℋ) = ((proj‘ ℋ)‘𝑢)
98fveq2i 6923 . . 3 (norm‘(𝑆‘ ℋ)) = (norm‘((proj‘ ℋ)‘𝑢))
10 pjch1 31702 . . . . 5 (𝑢 ∈ ℋ → ((proj‘ ℋ)‘𝑢) = 𝑢)
1110fveq2d 6924 . . . 4 (𝑢 ∈ ℋ → (norm‘((proj‘ ℋ)‘𝑢)) = (norm𝑢))
12 id 22 . . . 4 ((norm𝑢) = 1 → (norm𝑢) = 1)
1311, 12sylan9eq 2800 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (norm‘((proj‘ ℋ)‘𝑢)) = 1)
149, 13eqtrid 2792 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (norm‘(𝑆‘ ℋ)) = 1)
154hstrlem2 32291 . . . . . . . . . . . 12 (𝑧C → (𝑆𝑧) = ((proj𝑧)‘𝑢))
164hstrlem2 32291 . . . . . . . . . . . 12 (𝑤C → (𝑆𝑤) = ((proj𝑤)‘𝑢))
1715, 16oveqan12d 7467 . . . . . . . . . . 11 ((𝑧C𝑤C ) → ((𝑆𝑧) ·ih (𝑆𝑤)) = (((proj𝑧)‘𝑢) ·ih ((proj𝑤)‘𝑢)))
18173adant3 1132 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → ((𝑆𝑧) ·ih (𝑆𝑤)) = (((proj𝑧)‘𝑢) ·ih ((proj𝑤)‘𝑢)))
1918adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆𝑧) ·ih (𝑆𝑤)) = (((proj𝑧)‘𝑢) ·ih ((proj𝑤)‘𝑢)))
20 pjoi0 31749 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (((proj𝑧)‘𝑢) ·ih ((proj𝑤)‘𝑢)) = 0)
2119, 20eqtrd 2780 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆𝑧) ·ih (𝑆𝑤)) = 0)
22 pjcjt2 31724 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
2322imp 406 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
24 chjcl 31389 . . . . . . . . . . . 12 ((𝑧C𝑤C ) → (𝑧 𝑤) ∈ C )
254hstrlem2 32291 . . . . . . . . . . . 12 ((𝑧 𝑤) ∈ C → (𝑆‘(𝑧 𝑤)) = ((proj‘(𝑧 𝑤))‘𝑢))
2624, 25syl 17 . . . . . . . . . . 11 ((𝑧C𝑤C ) → (𝑆‘(𝑧 𝑤)) = ((proj‘(𝑧 𝑤))‘𝑢))
27263adant3 1132 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑆‘(𝑧 𝑤)) = ((proj‘(𝑧 𝑤))‘𝑢))
2827adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((proj‘(𝑧 𝑤))‘𝑢))
2915, 16oveqan12d 7467 . . . . . . . . . . 11 ((𝑧C𝑤C ) → ((𝑆𝑧) + (𝑆𝑤)) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
30293adant3 1132 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → ((𝑆𝑧) + (𝑆𝑤)) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
3130adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆𝑧) + (𝑆𝑤)) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
3223, 28, 313eqtr4d 2790 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))
3321, 32jca 511 . . . . . . 7 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))
34333exp1 1352 . . . . . 6 (𝑧C → (𝑤C → (𝑢 ∈ ℋ → (𝑧 ⊆ (⊥‘𝑤) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))))
3534com3r 87 . . . . 5 (𝑢 ∈ ℋ → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))))
3635adantr 480 . . . 4 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))))
3736ralrimdv 3158 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → ∀𝑤C (𝑧 ⊆ (⊥‘𝑤) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
3837ralrimiv 3151 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
39 ishst 32246 . 2 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (((𝑆𝑧) ·ih (𝑆𝑤)) = 0 ∧ (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
405, 14, 38, 39syl3anbrc 1343 1 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ CHStates)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  chba 30951   + cva 30952   ·ih csp 30954  normcno 30955   C cch 30961  cort 30962   chj 30965  projcpjh 30969  CHStateschst 30995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-chj 31342  df-pjh 31427  df-hst 32244
This theorem is referenced by:  hstrlem3  32293
  Copyright terms: Public domain W3C validator