MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcom Structured version   Visualization version   GIF version

Theorem mulgaddcom 19129
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))

Proof of Theorem mulgaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7446 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
31oveq2d 7447 . . . . . 6 (𝑥 = 0 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (0 · 𝑋)))
42, 3eqeq12d 2751 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋))))
5 oveq1 7438 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 7446 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((𝑦 · 𝑋) + 𝑋))
75oveq2d 7447 . . . . . 6 (𝑥 = 𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑦 · 𝑋)))
86, 7eqeq12d 2751 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
9 oveq1 7438 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 7446 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) + 𝑋) = (((𝑦 + 1) · 𝑋) + 𝑋))
119oveq2d 7447 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + ((𝑦 + 1) · 𝑋)))
1210, 11eqeq12d 2751 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
13 oveq1 7438 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 7446 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
1513oveq2d 7447 . . . . . 6 (𝑥 = -𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (-𝑦 · 𝑋)))
1614, 15eqeq12d 2751 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))
17 oveq1 7438 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 7446 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) + 𝑋) = ((𝑁 · 𝑋) + 𝑋))
1917oveq2d 7447 . . . . . 6 (𝑥 = 𝑁 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑁 · 𝑋)))
2018, 19eqeq12d 2751 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
21 mulgaddcom.b . . . . . . 7 𝐵 = (Base‘𝐺)
22 mulgaddcom.p . . . . . . 7 + = (+g𝐺)
23 eqid 2735 . . . . . . 7 (0g𝐺) = (0g𝐺)
2421, 22, 23grplid 18998 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
25 mulgaddcom.t . . . . . . . . 9 · = (.g𝐺)
2621, 23, 25mulg0 19105 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 481 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827oveq1d 7446 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
2927oveq2d 7447 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = (𝑋 + (0g𝐺)))
3021, 22, 23grprid 18999 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
3129, 30eqtrd 2775 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = 𝑋)
3224, 28, 313eqtr4d 2785 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋)))
33 nn0z 12636 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
34 simp1 1135 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝐺 ∈ Grp)
35 simp2 1136 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝑋𝐵)
3621, 25mulgcl 19122 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
37363com23 1125 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → (𝑦 · 𝑋) ∈ 𝐵)
3821, 22grpass 18973 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
3934, 35, 37, 35, 38syl13anc 1371 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4033, 39syl3an3 1164 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4140adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
42 grpmnd 18971 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
43423ad2ant1 1132 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
44 simp3 1137 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
45 simp2 1136 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑋𝐵)
4621, 25, 22mulgnn0p1 19116 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4743, 44, 45, 46syl3anc 1370 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4847eqeq1d 2737 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
4948biimpar 477 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)))
5049oveq1d 7446 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = ((𝑋 + (𝑦 · 𝑋)) + 𝑋))
5147oveq2d 7447 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5251adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5341, 50, 523eqtr4d 2785 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))
5453ex 412 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
55543expia 1120 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))))
56 nnz 12632 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5721, 25, 22mulgaddcomlem 19128 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
58573exp1 1351 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
5958com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
6059imp 406 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
6156, 60syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
624, 8, 12, 16, 20, 32, 55, 61zindd 12717 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
6362ex 412 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
6463com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
65643imp 1110 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  -cneg 11491  cn 12264  0cn0 12524  cz 12611  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  Grpcgrp 18964  .gcmg 19098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099
This theorem is referenced by:  mulginvcom  19130
  Copyright terms: Public domain W3C validator