MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcom Structured version   Visualization version   GIF version

Theorem mulgaddcom 18772
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))

Proof of Theorem mulgaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7314 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7322 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
31oveq2d 7323 . . . . . 6 (𝑥 = 0 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (0 · 𝑋)))
42, 3eqeq12d 2752 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋))))
5 oveq1 7314 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 7322 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((𝑦 · 𝑋) + 𝑋))
75oveq2d 7323 . . . . . 6 (𝑥 = 𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑦 · 𝑋)))
86, 7eqeq12d 2752 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
9 oveq1 7314 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 7322 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) + 𝑋) = (((𝑦 + 1) · 𝑋) + 𝑋))
119oveq2d 7323 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + ((𝑦 + 1) · 𝑋)))
1210, 11eqeq12d 2752 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
13 oveq1 7314 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 7322 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
1513oveq2d 7323 . . . . . 6 (𝑥 = -𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (-𝑦 · 𝑋)))
1614, 15eqeq12d 2752 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))
17 oveq1 7314 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 7322 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) + 𝑋) = ((𝑁 · 𝑋) + 𝑋))
1917oveq2d 7323 . . . . . 6 (𝑥 = 𝑁 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑁 · 𝑋)))
2018, 19eqeq12d 2752 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
21 mulgaddcom.b . . . . . . 7 𝐵 = (Base‘𝐺)
22 mulgaddcom.p . . . . . . 7 + = (+g𝐺)
23 eqid 2736 . . . . . . 7 (0g𝐺) = (0g𝐺)
2421, 22, 23grplid 18654 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
25 mulgaddcom.t . . . . . . . . 9 · = (.g𝐺)
2621, 23, 25mulg0 18752 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 483 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827oveq1d 7322 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
2927oveq2d 7323 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = (𝑋 + (0g𝐺)))
3021, 22, 23grprid 18655 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
3129, 30eqtrd 2776 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = 𝑋)
3224, 28, 313eqtr4d 2786 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋)))
33 nn0z 12389 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
34 simp1 1136 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝐺 ∈ Grp)
35 simp2 1137 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝑋𝐵)
3621, 25mulgcl 18766 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
37363com23 1126 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → (𝑦 · 𝑋) ∈ 𝐵)
3821, 22grpass 18631 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
3934, 35, 37, 35, 38syl13anc 1372 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4033, 39syl3an3 1165 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4140adantr 482 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
42 grpmnd 18629 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
43423ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
44 simp3 1138 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
45 simp2 1137 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑋𝐵)
4621, 25, 22mulgnn0p1 18760 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4743, 44, 45, 46syl3anc 1371 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4847eqeq1d 2738 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
4948biimpar 479 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)))
5049oveq1d 7322 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = ((𝑋 + (𝑦 · 𝑋)) + 𝑋))
5147oveq2d 7323 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5251adantr 482 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5341, 50, 523eqtr4d 2786 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))
5453ex 414 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
55543expia 1121 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))))
56 nnz 12388 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5721, 25, 22mulgaddcomlem 18771 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
58573exp1 1352 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
5958com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
6059imp 408 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
6156, 60syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
624, 8, 12, 16, 20, 32, 55, 61zindd 12467 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
6362ex 414 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
6463com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
65643imp 1111 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  0cc0 10917  1c1 10918   + caddc 10920  -cneg 11252  cn 12019  0cn0 12279  cz 12365  Basecbs 16957  +gcplusg 17007  0gc0g 17195  Mndcmnd 18430  Grpcgrp 18622  .gcmg 18745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-seq 13768  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-minusg 18626  df-mulg 18746
This theorem is referenced by:  mulginvcom  18773
  Copyright terms: Public domain W3C validator