MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcom Structured version   Visualization version   GIF version

Theorem mulgaddcom 19078
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))

Proof of Theorem mulgaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7426 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7434 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
31oveq2d 7435 . . . . . 6 (𝑥 = 0 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (0 · 𝑋)))
42, 3eqeq12d 2741 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋))))
5 oveq1 7426 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 7434 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((𝑦 · 𝑋) + 𝑋))
75oveq2d 7435 . . . . . 6 (𝑥 = 𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑦 · 𝑋)))
86, 7eqeq12d 2741 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
9 oveq1 7426 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 7434 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) + 𝑋) = (((𝑦 + 1) · 𝑋) + 𝑋))
119oveq2d 7435 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + ((𝑦 + 1) · 𝑋)))
1210, 11eqeq12d 2741 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
13 oveq1 7426 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 7434 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
1513oveq2d 7435 . . . . . 6 (𝑥 = -𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (-𝑦 · 𝑋)))
1614, 15eqeq12d 2741 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))
17 oveq1 7426 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 7434 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) + 𝑋) = ((𝑁 · 𝑋) + 𝑋))
1917oveq2d 7435 . . . . . 6 (𝑥 = 𝑁 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑁 · 𝑋)))
2018, 19eqeq12d 2741 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
21 mulgaddcom.b . . . . . . 7 𝐵 = (Base‘𝐺)
22 mulgaddcom.p . . . . . . 7 + = (+g𝐺)
23 eqid 2725 . . . . . . 7 (0g𝐺) = (0g𝐺)
2421, 22, 23grplid 18948 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
25 mulgaddcom.t . . . . . . . . 9 · = (.g𝐺)
2621, 23, 25mulg0 19054 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 480 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827oveq1d 7434 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
2927oveq2d 7435 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = (𝑋 + (0g𝐺)))
3021, 22, 23grprid 18949 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
3129, 30eqtrd 2765 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = 𝑋)
3224, 28, 313eqtr4d 2775 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋)))
33 nn0z 12621 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
34 simp1 1133 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝐺 ∈ Grp)
35 simp2 1134 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝑋𝐵)
3621, 25mulgcl 19071 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
37363com23 1123 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → (𝑦 · 𝑋) ∈ 𝐵)
3821, 22grpass 18923 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
3934, 35, 37, 35, 38syl13anc 1369 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4033, 39syl3an3 1162 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4140adantr 479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
42 grpmnd 18921 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
43423ad2ant1 1130 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
44 simp3 1135 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
45 simp2 1134 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑋𝐵)
4621, 25, 22mulgnn0p1 19065 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4743, 44, 45, 46syl3anc 1368 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4847eqeq1d 2727 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
4948biimpar 476 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)))
5049oveq1d 7434 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = ((𝑋 + (𝑦 · 𝑋)) + 𝑋))
5147oveq2d 7435 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5251adantr 479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5341, 50, 523eqtr4d 2775 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))
5453ex 411 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
55543expia 1118 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))))
56 nnz 12617 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5721, 25, 22mulgaddcomlem 19077 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
58573exp1 1349 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
5958com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
6059imp 405 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
6156, 60syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
624, 8, 12, 16, 20, 32, 55, 61zindd 12701 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
6362ex 411 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
6463com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
65643imp 1108 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  0cc0 11145  1c1 11146   + caddc 11148  -cneg 11482  cn 12250  0cn0 12510  cz 12596  Basecbs 17199  +gcplusg 17252  0gc0g 17440  Mndcmnd 18713  Grpcgrp 18914  .gcmg 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-seq 14008  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-grp 18917  df-minusg 18918  df-mulg 19048
This theorem is referenced by:  mulginvcom  19079
  Copyright terms: Public domain W3C validator