Step | Hyp | Ref
| Expression |
1 | | sseq1 3946 |
. . . 4
⊢ (𝑥 = ∅ → (𝑥 ⊆ ℤ ↔ ∅
⊆ ℤ)) |
2 | | raleq 3342 |
. . . . . . 7
⊢ (𝑥 = ∅ → (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘)) |
3 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = ∅ →
(lcm‘𝑥) =
(lcm‘∅)) |
4 | 3 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = ∅ →
((lcm‘𝑥)
∥ 𝑘 ↔
(lcm‘∅) ∥ 𝑘)) |
5 | 2, 4 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = ∅ →
((∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → (lcm‘∅) ∥
𝑘))) |
6 | 5 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = ∅ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → (lcm‘∅) ∥
𝑘))) |
7 | | uneq1 4090 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 ∪ {𝑛}) = (∅ ∪ {𝑛})) |
8 | 7 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑥 = ∅ →
(lcm‘(𝑥 ∪
{𝑛})) =
(lcm‘(∅ ∪ {𝑛}))) |
9 | 3 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑥 = ∅ →
((lcm‘𝑥) lcm
𝑛) =
((lcm‘∅) lcm 𝑛)) |
10 | 8, 9 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = ∅ →
((lcm‘(𝑥 ∪
{𝑛})) =
((lcm‘𝑥) lcm
𝑛) ↔
(lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))) |
11 | 10 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = ∅ → (∀𝑛 ∈ ℤ
(lcm‘(𝑥 ∪
{𝑛})) =
((lcm‘𝑥) lcm
𝑛) ↔ ∀𝑛 ∈ ℤ
(lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))) |
12 | 6, 11 | anbi12d 631 |
. . . 4
⊢ (𝑥 = ∅ →
((∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → (lcm‘∅) ∥
𝑘) ∧ ∀𝑛 ∈ ℤ
(lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))) |
13 | 1, 12 | imbi12d 345 |
. . 3
⊢ (𝑥 = ∅ → ((𝑥 ⊆ ℤ →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛))) ↔ (∅ ⊆ ℤ →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ ∅
𝑚 ∥ 𝑘 →
(lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅
∪ {𝑛})) =
((lcm‘∅) lcm 𝑛))))) |
14 | | sseq1 3946 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ)) |
15 | | raleq 3342 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘)) |
16 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (lcm‘𝑥) = (lcm‘𝑦)) |
17 | 16 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((lcm‘𝑥) ∥ 𝑘 ↔ (lcm‘𝑦) ∥ 𝑘)) |
18 | 15, 17 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
19 | 18 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘))) |
20 | | uneq1 4090 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∪ {𝑛}) = (𝑦 ∪ {𝑛})) |
21 | 20 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑛}))) |
22 | 16 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((lcm‘𝑥) lcm 𝑛) = ((lcm‘𝑦) lcm 𝑛)) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) |
24 | 23 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) |
25 | 19, 24 | anbi12d 631 |
. . . 4
⊢ (𝑥 = 𝑦 → ((∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) |
26 | 14, 25 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛))) ↔ (𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) |
27 | | sseq1 3946 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℤ ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)) |
28 | | raleq 3342 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘)) |
29 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘𝑥) = (lcm‘(𝑦 ∪ {𝑧}))) |
30 | 29 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘𝑥) ∥ 𝑘 ↔ (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) |
31 | 28, 30 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))) |
32 | 31 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))) |
33 | | uneq1 4090 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
34 | 33 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛}))) |
35 | 29 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘𝑥) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
36 | 34, 35 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛) ↔ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
37 | 36 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
38 | 32, 37 | anbi12d 631 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
39 | 27, 38 | imbi12d 345 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛))) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
40 | | sseq1 3946 |
. . . 4
⊢ (𝑥 = 𝑌 → (𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ)) |
41 | | raleq 3342 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘)) |
42 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → (lcm‘𝑥) = (lcm‘𝑌)) |
43 | 42 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → ((lcm‘𝑥) ∥ 𝑘 ↔ (lcm‘𝑌) ∥ 𝑘)) |
44 | 41, 43 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = 𝑌 → ((∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘))) |
45 | 44 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑌 → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘))) |
46 | | uneq1 4090 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → (𝑥 ∪ {𝑛}) = (𝑌 ∪ {𝑛})) |
47 | 46 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑛}))) |
48 | 42 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → ((lcm‘𝑥) lcm 𝑛) = ((lcm‘𝑌) lcm 𝑛)) |
49 | 47, 48 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑌 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) |
50 | 49 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑌 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) |
51 | 45, 50 | anbi12d 631 |
. . . 4
⊢ (𝑥 = 𝑌 → ((∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛)))) |
52 | 40, 51 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝑌 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → (lcm‘𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm‘𝑥) lcm 𝑛))) ↔ (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))))) |
53 | | lcmf0 16339 |
. . . . . . . 8
⊢
(lcm‘∅) = 1 |
54 | | 1dvds 15980 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ → 1 ∥
𝑘) |
55 | 53, 54 | eqbrtrid 5109 |
. . . . . . 7
⊢ (𝑘 ∈ ℤ →
(lcm‘∅) ∥ 𝑘) |
56 | 55 | a1d 25 |
. . . . . 6
⊢ (𝑘 ∈ ℤ →
(∀𝑚 ∈ ∅
𝑚 ∥ 𝑘 →
(lcm‘∅) ∥ 𝑘)) |
57 | 56 | adantl 482 |
. . . . 5
⊢ ((∅
⊆ ℤ ∧ 𝑘
∈ ℤ) → (∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → (lcm‘∅) ∥
𝑘)) |
58 | 57 | ralrimiva 3103 |
. . . 4
⊢ (∅
⊆ ℤ → ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → (lcm‘∅) ∥
𝑘)) |
59 | | uncom 4087 |
. . . . . . . . . 10
⊢ (∅
∪ {𝑛}) = ({𝑛} ∪
∅) |
60 | | un0 4324 |
. . . . . . . . . 10
⊢ ({𝑛} ∪ ∅) = {𝑛} |
61 | 59, 60 | eqtri 2766 |
. . . . . . . . 9
⊢ (∅
∪ {𝑛}) = {𝑛} |
62 | 61 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ → (∅
∪ {𝑛}) = {𝑛}) |
63 | 62 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ →
(lcm‘(∅ ∪ {𝑛})) = (lcm‘{𝑛})) |
64 | | lcmfsn 16340 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ →
(lcm‘{𝑛}) =
(abs‘𝑛)) |
65 | 53 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ →
(lcm‘∅) = 1) |
66 | 65 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ →
((lcm‘∅) lcm 𝑛) = (1 lcm 𝑛)) |
67 | | 1z 12350 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
68 | | lcmcom 16298 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝑛
∈ ℤ) → (1 lcm 𝑛) = (𝑛 lcm 1)) |
69 | 67, 68 | mpan 687 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ → (1 lcm
𝑛) = (𝑛 lcm 1)) |
70 | | lcm1 16315 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ → (𝑛 lcm 1) = (abs‘𝑛)) |
71 | 66, 69, 70 | 3eqtrrd 2783 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ →
(abs‘𝑛) =
((lcm‘∅) lcm 𝑛)) |
72 | 63, 64, 71 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝑛 ∈ ℤ →
(lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)) |
73 | 72 | adantl 482 |
. . . . 5
⊢ ((∅
⊆ ℤ ∧ 𝑛
∈ ℤ) → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)) |
74 | 73 | ralrimiva 3103 |
. . . 4
⊢ (∅
⊆ ℤ → ∀𝑛 ∈ ℤ (lcm‘(∅
∪ {𝑛})) =
((lcm‘∅) lcm 𝑛)) |
75 | 58, 74 | jca 512 |
. . 3
⊢ (∅
⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → (lcm‘∅) ∥
𝑘) ∧ ∀𝑛 ∈ ℤ
(lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))) |
76 | | unss 4118 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ) |
77 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆
ℤ) |
78 | 76, 77 | sylbir 234 |
. . . . . . 7
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ) |
79 | 78 | adantl 482 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → 𝑦 ⊆ ℤ) |
80 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
81 | 80 | snss 4719 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℤ ↔ {𝑧} ⊆
ℤ) |
82 | | lcmfunsnlem1 16342 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) |
83 | | lcmfunsnlem2 16345 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
84 | 82, 83 | jca 512 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
85 | 84 | 3exp1 1351 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin →
((∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))) |
86 | 81, 85 | sylbir 234 |
. . . . . . . . 9
⊢ ({𝑧} ⊆ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin →
((∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))) |
87 | 86 | impcom 408 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin →
((∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
88 | 76, 87 | sylbir 234 |
. . . . . . 7
⊢ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
89 | 88 | impcom 408 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
90 | 79, 89 | embantd 59 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((𝑦 ⊆ ℤ →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
91 | 90 | ex 413 |
. . . 4
⊢ (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ⊆ ℤ → ((𝑦 ⊆ ℤ →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
92 | 91 | com23 86 |
. . 3
⊢ (𝑦 ∈ Fin → ((𝑦 ⊆ ℤ →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
93 | 13, 26, 39, 52, 75, 92 | findcard2 8947 |
. 2
⊢ (𝑌 ∈ Fin → (𝑌 ⊆ ℤ →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛)))) |
94 | 93 | impcom 408 |
1
⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) →
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) |