MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem Structured version   Visualization version   GIF version

Theorem lcmfunsnlem 16413
Description: Lemma for lcmfdvds 16414 and lcmfunsn 16416. These two theorems must be proven simultaneously by induction on the cardinality of a finite set 𝑌, because they depend on each other. This can be seen by the two parts lcmfunsnlem1 16409 and lcmfunsnlem2 16412 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Distinct variable group:   𝑘,𝑛,𝑚,𝑌

Proof of Theorem lcmfunsnlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3955 . . . 4 (𝑥 = ∅ → (𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ))
2 raleq 3306 . . . . . . 7 (𝑥 = ∅ → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ ∅ 𝑚𝑘))
3 fveq2 6809 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
43breq1d 5095 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘∅) ∥ 𝑘))
52, 4imbi12d 344 . . . . . 6 (𝑥 = ∅ → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
65ralbidv 3171 . . . . 5 (𝑥 = ∅ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
7 uneq1 4100 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∪ {𝑛}) = (∅ ∪ {𝑛}))
87fveq2d 6813 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(∅ ∪ {𝑛})))
93oveq1d 7328 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) lcm 𝑛) = ((lcm‘∅) lcm 𝑛))
108, 9eqeq12d 2753 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
1110ralbidv 3171 . . . . 5 (𝑥 = ∅ → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
126, 11anbi12d 631 . . . 4 (𝑥 = ∅ → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))))
131, 12imbi12d 344 . . 3 (𝑥 = ∅ → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))))
14 sseq1 3955 . . . 4 (𝑥 = 𝑦 → (𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ))
15 raleq 3306 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑘))
16 fveq2 6809 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1716breq1d 5095 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑘))
1815, 17imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1918ralbidv 3171 . . . . 5 (𝑥 = 𝑦 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
20 uneq1 4100 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∪ {𝑛}) = (𝑦 ∪ {𝑛}))
2120fveq2d 6813 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑛})))
2216oveq1d 7328 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑦) lcm 𝑛))
2321, 22eqeq12d 2753 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2423ralbidv 3171 . . . . 5 (𝑥 = 𝑦 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2519, 24anbi12d 631 . . . 4 (𝑥 = 𝑦 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
2614, 25imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
27 sseq1 3955 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℤ ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ))
28 raleq 3306 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘))
29 fveq2 6809 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
3029breq1d 5095 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
3128, 30imbi12d 344 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
3231ralbidv 3171 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
33 uneq1 4100 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
3433fveq2d 6813 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
3529oveq1d 7328 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
3634, 35eqeq12d 2753 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3736ralbidv 3171 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3832, 37anbi12d 631 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
3927, 38imbi12d 344 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
40 sseq1 3955 . . . 4 (𝑥 = 𝑌 → (𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ))
41 raleq 3306 . . . . . . 7 (𝑥 = 𝑌 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑌 𝑚𝑘))
42 fveq2 6809 . . . . . . . 8 (𝑥 = 𝑌 → (lcm𝑥) = (lcm𝑌))
4342breq1d 5095 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑌) ∥ 𝑘))
4441, 43imbi12d 344 . . . . . 6 (𝑥 = 𝑌 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
4544ralbidv 3171 . . . . 5 (𝑥 = 𝑌 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
46 uneq1 4100 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥 ∪ {𝑛}) = (𝑌 ∪ {𝑛}))
4746fveq2d 6813 . . . . . . 7 (𝑥 = 𝑌 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑛})))
4842oveq1d 7328 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑌) lcm 𝑛))
4947, 48eqeq12d 2753 . . . . . 6 (𝑥 = 𝑌 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5049ralbidv 3171 . . . . 5 (𝑥 = 𝑌 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5145, 50anbi12d 631 . . . 4 (𝑥 = 𝑌 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
5240, 51imbi12d 344 . . 3 (𝑥 = 𝑌 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))))
53 lcmf0 16406 . . . . . . . 8 (lcm‘∅) = 1
54 1dvds 16049 . . . . . . . 8 (𝑘 ∈ ℤ → 1 ∥ 𝑘)
5553, 54eqbrtrid 5120 . . . . . . 7 (𝑘 ∈ ℤ → (lcm‘∅) ∥ 𝑘)
5655a1d 25 . . . . . 6 (𝑘 ∈ ℤ → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5756adantl 482 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5857ralrimiva 3140 . . . 4 (∅ ⊆ ℤ → ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
59 uncom 4097 . . . . . . . . . 10 (∅ ∪ {𝑛}) = ({𝑛} ∪ ∅)
60 un0 4334 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
6159, 60eqtri 2765 . . . . . . . . 9 (∅ ∪ {𝑛}) = {𝑛}
6261a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → (∅ ∪ {𝑛}) = {𝑛})
6362fveq2d 6813 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = (lcm‘{𝑛}))
64 lcmfsn 16407 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘{𝑛}) = (abs‘𝑛))
6553a1i 11 . . . . . . . . 9 (𝑛 ∈ ℤ → (lcm‘∅) = 1)
6665oveq1d 7328 . . . . . . . 8 (𝑛 ∈ ℤ → ((lcm‘∅) lcm 𝑛) = (1 lcm 𝑛))
67 1z 12420 . . . . . . . . 9 1 ∈ ℤ
68 lcmcom 16365 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (1 lcm 𝑛) = (𝑛 lcm 1))
6967, 68mpan 687 . . . . . . . 8 (𝑛 ∈ ℤ → (1 lcm 𝑛) = (𝑛 lcm 1))
70 lcm1 16382 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 lcm 1) = (abs‘𝑛))
7166, 69, 703eqtrrd 2782 . . . . . . 7 (𝑛 ∈ ℤ → (abs‘𝑛) = ((lcm‘∅) lcm 𝑛))
7263, 64, 713eqtrd 2781 . . . . . 6 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7372adantl 482 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ) → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7473ralrimiva 3140 . . . 4 (∅ ⊆ ℤ → ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7558, 74jca 512 . . 3 (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
76 unss 4128 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
77 simpl 483 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
7876, 77sylbir 234 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
7978adantl 482 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → 𝑦 ⊆ ℤ)
80 vex 3445 . . . . . . . . . . 11 𝑧 ∈ V
8180snss 4729 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
82 lcmfunsnlem1 16409 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
83 lcmfunsnlem2 16412 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
8482, 83jca 512 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
85843exp1 1351 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8681, 85sylbir 234 . . . . . . . . 9 ({𝑧} ⊆ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8786impcom 408 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8876, 87sylbir 234 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8988impcom 408 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9079, 89embantd 59 . . . . 5 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9190ex 413 . . . 4 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ⊆ ℤ → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9291com23 86 . . 3 (𝑦 ∈ Fin → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9313, 26, 39, 52, 75, 92findcard2 9004 . 2 (𝑌 ∈ Fin → (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
9493impcom 408 1 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  cun 3894  wss 3896  c0 4266  {csn 4569   class class class wbr 5085  cfv 6463  (class class class)co 7313  Fincfn 8779  1c1 10942  cz 12389  abscabs 15014  cdvds 16032   lcm clcm 16360  lcmclcmf 16361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-inf 9270  df-oi 9337  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-rp 12801  df-fz 13310  df-fzo 13453  df-fl 13582  df-mod 13660  df-seq 13792  df-exp 13853  df-hash 14115  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-clim 15266  df-prod 15685  df-dvds 16033  df-gcd 16271  df-lcm 16362  df-lcmf 16363
This theorem is referenced by:  lcmfdvds  16414  lcmfunsn  16416
  Copyright terms: Public domain W3C validator