MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem Structured version   Visualization version   GIF version

Theorem lcmfunsnlem 15987
Description: Lemma for lcmfdvds 15988 and lcmfunsn 15990. These two theorems must be proven simultaneously by induction on the cardinality of a finite set 𝑌, because they depend on each other. This can be seen by the two parts lcmfunsnlem1 15983 and lcmfunsnlem2 15986 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Distinct variable group:   𝑘,𝑛,𝑚,𝑌

Proof of Theorem lcmfunsnlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3994 . . . 4 (𝑥 = ∅ → (𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ))
2 raleq 3407 . . . . . . 7 (𝑥 = ∅ → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ ∅ 𝑚𝑘))
3 fveq2 6672 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
43breq1d 5078 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘∅) ∥ 𝑘))
52, 4imbi12d 347 . . . . . 6 (𝑥 = ∅ → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
65ralbidv 3199 . . . . 5 (𝑥 = ∅ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
7 uneq1 4134 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∪ {𝑛}) = (∅ ∪ {𝑛}))
87fveq2d 6676 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(∅ ∪ {𝑛})))
93oveq1d 7173 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) lcm 𝑛) = ((lcm‘∅) lcm 𝑛))
108, 9eqeq12d 2839 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
1110ralbidv 3199 . . . . 5 (𝑥 = ∅ → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
126, 11anbi12d 632 . . . 4 (𝑥 = ∅ → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))))
131, 12imbi12d 347 . . 3 (𝑥 = ∅ → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))))
14 sseq1 3994 . . . 4 (𝑥 = 𝑦 → (𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ))
15 raleq 3407 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑘))
16 fveq2 6672 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1716breq1d 5078 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑘))
1815, 17imbi12d 347 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1918ralbidv 3199 . . . . 5 (𝑥 = 𝑦 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
20 uneq1 4134 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∪ {𝑛}) = (𝑦 ∪ {𝑛}))
2120fveq2d 6676 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑛})))
2216oveq1d 7173 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑦) lcm 𝑛))
2321, 22eqeq12d 2839 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2423ralbidv 3199 . . . . 5 (𝑥 = 𝑦 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2519, 24anbi12d 632 . . . 4 (𝑥 = 𝑦 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
2614, 25imbi12d 347 . . 3 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
27 sseq1 3994 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℤ ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ))
28 raleq 3407 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘))
29 fveq2 6672 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
3029breq1d 5078 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
3128, 30imbi12d 347 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
3231ralbidv 3199 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
33 uneq1 4134 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
3433fveq2d 6676 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
3529oveq1d 7173 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
3634, 35eqeq12d 2839 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3736ralbidv 3199 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3832, 37anbi12d 632 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
3927, 38imbi12d 347 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
40 sseq1 3994 . . . 4 (𝑥 = 𝑌 → (𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ))
41 raleq 3407 . . . . . . 7 (𝑥 = 𝑌 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑌 𝑚𝑘))
42 fveq2 6672 . . . . . . . 8 (𝑥 = 𝑌 → (lcm𝑥) = (lcm𝑌))
4342breq1d 5078 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑌) ∥ 𝑘))
4441, 43imbi12d 347 . . . . . 6 (𝑥 = 𝑌 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
4544ralbidv 3199 . . . . 5 (𝑥 = 𝑌 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
46 uneq1 4134 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥 ∪ {𝑛}) = (𝑌 ∪ {𝑛}))
4746fveq2d 6676 . . . . . . 7 (𝑥 = 𝑌 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑛})))
4842oveq1d 7173 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑌) lcm 𝑛))
4947, 48eqeq12d 2839 . . . . . 6 (𝑥 = 𝑌 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5049ralbidv 3199 . . . . 5 (𝑥 = 𝑌 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5145, 50anbi12d 632 . . . 4 (𝑥 = 𝑌 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
5240, 51imbi12d 347 . . 3 (𝑥 = 𝑌 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))))
53 lcmf0 15980 . . . . . . . 8 (lcm‘∅) = 1
54 1dvds 15626 . . . . . . . 8 (𝑘 ∈ ℤ → 1 ∥ 𝑘)
5553, 54eqbrtrid 5103 . . . . . . 7 (𝑘 ∈ ℤ → (lcm‘∅) ∥ 𝑘)
5655a1d 25 . . . . . 6 (𝑘 ∈ ℤ → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5756adantl 484 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5857ralrimiva 3184 . . . 4 (∅ ⊆ ℤ → ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
59 uncom 4131 . . . . . . . . . 10 (∅ ∪ {𝑛}) = ({𝑛} ∪ ∅)
60 un0 4346 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
6159, 60eqtri 2846 . . . . . . . . 9 (∅ ∪ {𝑛}) = {𝑛}
6261a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → (∅ ∪ {𝑛}) = {𝑛})
6362fveq2d 6676 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = (lcm‘{𝑛}))
64 lcmfsn 15981 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘{𝑛}) = (abs‘𝑛))
6553a1i 11 . . . . . . . . 9 (𝑛 ∈ ℤ → (lcm‘∅) = 1)
6665oveq1d 7173 . . . . . . . 8 (𝑛 ∈ ℤ → ((lcm‘∅) lcm 𝑛) = (1 lcm 𝑛))
67 1z 12015 . . . . . . . . 9 1 ∈ ℤ
68 lcmcom 15939 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (1 lcm 𝑛) = (𝑛 lcm 1))
6967, 68mpan 688 . . . . . . . 8 (𝑛 ∈ ℤ → (1 lcm 𝑛) = (𝑛 lcm 1))
70 lcm1 15956 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 lcm 1) = (abs‘𝑛))
7166, 69, 703eqtrrd 2863 . . . . . . 7 (𝑛 ∈ ℤ → (abs‘𝑛) = ((lcm‘∅) lcm 𝑛))
7263, 64, 713eqtrd 2862 . . . . . 6 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7372adantl 484 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ) → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7473ralrimiva 3184 . . . 4 (∅ ⊆ ℤ → ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7558, 74jca 514 . . 3 (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
76 unss 4162 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
77 simpl 485 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
7876, 77sylbir 237 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
7978adantl 484 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → 𝑦 ⊆ ℤ)
80 vex 3499 . . . . . . . . . . 11 𝑧 ∈ V
8180snss 4720 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
82 lcmfunsnlem1 15983 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
83 lcmfunsnlem2 15986 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
8482, 83jca 514 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
85843exp1 1348 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8681, 85sylbir 237 . . . . . . . . 9 ({𝑧} ⊆ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8786impcom 410 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8876, 87sylbir 237 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8988impcom 410 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9079, 89embantd 59 . . . . 5 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9190ex 415 . . . 4 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ⊆ ℤ → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9291com23 86 . . 3 (𝑦 ∈ Fin → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9313, 26, 39, 52, 75, 92findcard2 8760 . 2 (𝑌 ∈ Fin → (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
9493impcom 410 1 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cun 3936  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  cfv 6357  (class class class)co 7158  Fincfn 8511  1c1 10540  cz 11984  abscabs 14595  cdvds 15609   lcm clcm 15934  lcmclcmf 15935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-prod 15262  df-dvds 15610  df-gcd 15846  df-lcm 15936  df-lcmf 15937
This theorem is referenced by:  lcmfdvds  15988  lcmfunsn  15990
  Copyright terms: Public domain W3C validator