MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem Structured version   Visualization version   GIF version

Theorem lcmfunsnlem 16642
Description: Lemma for lcmfdvds 16643 and lcmfunsn 16645. These two theorems must be proven simultaneously by induction on the cardinality of a finite set 𝑌, because they depend on each other. This can be seen by the two parts lcmfunsnlem1 16638 and lcmfunsnlem2 16641 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Distinct variable group:   𝑘,𝑛,𝑚,𝑌

Proof of Theorem lcmfunsnlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 4005 . . . 4 (𝑥 = ∅ → (𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ))
2 raleq 3312 . . . . . . 7 (𝑥 = ∅ → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ ∅ 𝑚𝑘))
3 fveq2 6901 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
43breq1d 5163 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘∅) ∥ 𝑘))
52, 4imbi12d 343 . . . . . 6 (𝑥 = ∅ → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
65ralbidv 3168 . . . . 5 (𝑥 = ∅ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
7 uneq1 4156 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∪ {𝑛}) = (∅ ∪ {𝑛}))
87fveq2d 6905 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(∅ ∪ {𝑛})))
93oveq1d 7439 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) lcm 𝑛) = ((lcm‘∅) lcm 𝑛))
108, 9eqeq12d 2742 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
1110ralbidv 3168 . . . . 5 (𝑥 = ∅ → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
126, 11anbi12d 630 . . . 4 (𝑥 = ∅ → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))))
131, 12imbi12d 343 . . 3 (𝑥 = ∅ → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))))
14 sseq1 4005 . . . 4 (𝑥 = 𝑦 → (𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ))
15 raleq 3312 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑘))
16 fveq2 6901 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1716breq1d 5163 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑘))
1815, 17imbi12d 343 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1918ralbidv 3168 . . . . 5 (𝑥 = 𝑦 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
20 uneq1 4156 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∪ {𝑛}) = (𝑦 ∪ {𝑛}))
2120fveq2d 6905 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑛})))
2216oveq1d 7439 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑦) lcm 𝑛))
2321, 22eqeq12d 2742 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2423ralbidv 3168 . . . . 5 (𝑥 = 𝑦 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2519, 24anbi12d 630 . . . 4 (𝑥 = 𝑦 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
2614, 25imbi12d 343 . . 3 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
27 sseq1 4005 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℤ ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ))
28 raleq 3312 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘))
29 fveq2 6901 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
3029breq1d 5163 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
3128, 30imbi12d 343 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
3231ralbidv 3168 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
33 uneq1 4156 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
3433fveq2d 6905 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
3529oveq1d 7439 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
3634, 35eqeq12d 2742 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3736ralbidv 3168 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3832, 37anbi12d 630 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
3927, 38imbi12d 343 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
40 sseq1 4005 . . . 4 (𝑥 = 𝑌 → (𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ))
41 raleq 3312 . . . . . . 7 (𝑥 = 𝑌 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑌 𝑚𝑘))
42 fveq2 6901 . . . . . . . 8 (𝑥 = 𝑌 → (lcm𝑥) = (lcm𝑌))
4342breq1d 5163 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑌) ∥ 𝑘))
4441, 43imbi12d 343 . . . . . 6 (𝑥 = 𝑌 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
4544ralbidv 3168 . . . . 5 (𝑥 = 𝑌 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
46 uneq1 4156 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥 ∪ {𝑛}) = (𝑌 ∪ {𝑛}))
4746fveq2d 6905 . . . . . . 7 (𝑥 = 𝑌 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑛})))
4842oveq1d 7439 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑌) lcm 𝑛))
4947, 48eqeq12d 2742 . . . . . 6 (𝑥 = 𝑌 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5049ralbidv 3168 . . . . 5 (𝑥 = 𝑌 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5145, 50anbi12d 630 . . . 4 (𝑥 = 𝑌 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
5240, 51imbi12d 343 . . 3 (𝑥 = 𝑌 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))))
53 lcmf0 16635 . . . . . . . 8 (lcm‘∅) = 1
54 1dvds 16273 . . . . . . . 8 (𝑘 ∈ ℤ → 1 ∥ 𝑘)
5553, 54eqbrtrid 5188 . . . . . . 7 (𝑘 ∈ ℤ → (lcm‘∅) ∥ 𝑘)
5655a1d 25 . . . . . 6 (𝑘 ∈ ℤ → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5756adantl 480 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5857ralrimiva 3136 . . . 4 (∅ ⊆ ℤ → ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
59 uncom 4153 . . . . . . . . . 10 (∅ ∪ {𝑛}) = ({𝑛} ∪ ∅)
60 un0 4395 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
6159, 60eqtri 2754 . . . . . . . . 9 (∅ ∪ {𝑛}) = {𝑛}
6261a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → (∅ ∪ {𝑛}) = {𝑛})
6362fveq2d 6905 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = (lcm‘{𝑛}))
64 lcmfsn 16636 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘{𝑛}) = (abs‘𝑛))
6553a1i 11 . . . . . . . . 9 (𝑛 ∈ ℤ → (lcm‘∅) = 1)
6665oveq1d 7439 . . . . . . . 8 (𝑛 ∈ ℤ → ((lcm‘∅) lcm 𝑛) = (1 lcm 𝑛))
67 1z 12644 . . . . . . . . 9 1 ∈ ℤ
68 lcmcom 16594 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (1 lcm 𝑛) = (𝑛 lcm 1))
6967, 68mpan 688 . . . . . . . 8 (𝑛 ∈ ℤ → (1 lcm 𝑛) = (𝑛 lcm 1))
70 lcm1 16611 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 lcm 1) = (abs‘𝑛))
7166, 69, 703eqtrrd 2771 . . . . . . 7 (𝑛 ∈ ℤ → (abs‘𝑛) = ((lcm‘∅) lcm 𝑛))
7263, 64, 713eqtrd 2770 . . . . . 6 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7372adantl 480 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ) → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7473ralrimiva 3136 . . . 4 (∅ ⊆ ℤ → ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7558, 74jca 510 . . 3 (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
76 unss 4185 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
77 simpl 481 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
7876, 77sylbir 234 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
7978adantl 480 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → 𝑦 ⊆ ℤ)
80 vex 3466 . . . . . . . . . . 11 𝑧 ∈ V
8180snss 4794 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
82 lcmfunsnlem1 16638 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
83 lcmfunsnlem2 16641 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
8482, 83jca 510 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
85843exp1 1349 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8681, 85sylbir 234 . . . . . . . . 9 ({𝑧} ⊆ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8786impcom 406 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8876, 87sylbir 234 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8988impcom 406 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9079, 89embantd 59 . . . . 5 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9190ex 411 . . . 4 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ⊆ ℤ → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9291com23 86 . . 3 (𝑦 ∈ Fin → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9313, 26, 39, 52, 75, 92findcard2 9202 . 2 (𝑌 ∈ Fin → (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
9493impcom 406 1 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  cun 3945  wss 3947  c0 4325  {csn 4633   class class class wbr 5153  cfv 6554  (class class class)co 7424  Fincfn 8974  1c1 11159  cz 12610  abscabs 15239  cdvds 16256   lcm clcm 16589  lcmclcmf 16590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-prod 15908  df-dvds 16257  df-gcd 16495  df-lcm 16591  df-lcmf 16592
This theorem is referenced by:  lcmfdvds  16643  lcmfunsn  16645
  Copyright terms: Public domain W3C validator