MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgrrn Structured version   Visualization version   GIF version

Theorem 3cyclfrgrrn 30314
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
3cyclfrgrrn1.v 𝑉 = (Vtx‘𝐺)
3cyclfrgrrn1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3cyclfrgrrn ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Distinct variable groups:   𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎   𝑉,𝑎,𝑏,𝑐   𝐺,𝑏,𝑐,𝑎

Proof of Theorem 3cyclfrgrrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3cyclfrgrrn1.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
21fvexi 6920 . . . . . . . 8 𝑉 ∈ V
3 hashgt12el2 14458 . . . . . . . 8 ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
42, 3mp3an1 1447 . . . . . . 7 ((1 < (♯‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
5 simpr 484 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph )
6 pm3.22 459 . . . . . . . . . . . 12 ((𝑥𝑉𝑎𝑉) → (𝑎𝑉𝑥𝑉))
763adant2 1130 . . . . . . . . . . 11 ((𝑥𝑉𝑎𝑥𝑎𝑉) → (𝑎𝑉𝑥𝑉))
87adantr 480 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎𝑉𝑥𝑉))
9 simpl2 1191 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎𝑥)
10 3cyclfrgrrn1.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
111, 103cyclfrgrrn1 30313 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
125, 8, 9, 11syl3anc 1370 . . . . . . . . 9 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
13123exp1 1351 . . . . . . . 8 (𝑥𝑉 → (𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1413rexlimiv 3145 . . . . . . 7 (∃𝑥𝑉 𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
154, 14syl 17 . . . . . 6 ((1 < (♯‘𝑉) ∧ 𝑎𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1615expcom 413 . . . . 5 (𝑎𝑉 → (1 < (♯‘𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1716pm2.43a 54 . . . 4 (𝑎𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1817com13 88 . . 3 (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1918imp 406 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
2019ralrimiv 3142 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  {cpr 4632   class class class wbr 5147  cfv 6562  1c1 11153   < clt 11292  chash 14365  Vtxcvtx 29027  Edgcedg 29078   FriendGraph cfrgr 30286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366  df-edg 29079  df-umgr 29114  df-usgr 29182  df-frgr 30287
This theorem is referenced by:  3cyclfrgrrn2  30315  3cyclfrgr  30316
  Copyright terms: Public domain W3C validator