MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgrrn Structured version   Visualization version   GIF version

Theorem 3cyclfrgrrn 28374
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
3cyclfrgrrn1.v 𝑉 = (Vtx‘𝐺)
3cyclfrgrrn1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3cyclfrgrrn ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Distinct variable groups:   𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎   𝑉,𝑎,𝑏,𝑐   𝐺,𝑏,𝑐,𝑎

Proof of Theorem 3cyclfrgrrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3cyclfrgrrn1.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
21fvexi 6736 . . . . . . . 8 𝑉 ∈ V
3 hashgt12el2 13995 . . . . . . . 8 ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
42, 3mp3an1 1450 . . . . . . 7 ((1 < (♯‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
5 simpr 488 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph )
6 pm3.22 463 . . . . . . . . . . . 12 ((𝑥𝑉𝑎𝑉) → (𝑎𝑉𝑥𝑉))
763adant2 1133 . . . . . . . . . . 11 ((𝑥𝑉𝑎𝑥𝑎𝑉) → (𝑎𝑉𝑥𝑉))
87adantr 484 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎𝑉𝑥𝑉))
9 simpl2 1194 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎𝑥)
10 3cyclfrgrrn1.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
111, 103cyclfrgrrn1 28373 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
125, 8, 9, 11syl3anc 1373 . . . . . . . . 9 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
13123exp1 1354 . . . . . . . 8 (𝑥𝑉 → (𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1413rexlimiv 3204 . . . . . . 7 (∃𝑥𝑉 𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
154, 14syl 17 . . . . . 6 ((1 < (♯‘𝑉) ∧ 𝑎𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1615expcom 417 . . . . 5 (𝑎𝑉 → (1 < (♯‘𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1716pm2.43a 54 . . . 4 (𝑎𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1817com13 88 . . 3 (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1918imp 410 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
2019ralrimiv 3104 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3413  {cpr 4548   class class class wbr 5058  cfv 6385  1c1 10735   < clt 10872  chash 13901  Vtxcvtx 27092  Edgcedg 27143   FriendGraph cfrgr 28346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-oadd 8211  df-er 8396  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-dju 9522  df-card 9560  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-nn 11836  df-2 11898  df-n0 12096  df-xnn0 12168  df-z 12182  df-uz 12444  df-fz 13101  df-hash 13902  df-edg 27144  df-umgr 27179  df-usgr 27247  df-frgr 28347
This theorem is referenced by:  3cyclfrgrrn2  28375  3cyclfrgr  28376
  Copyright terms: Public domain W3C validator