MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgrrn Structured version   Visualization version   GIF version

Theorem 3cyclfrgrrn 28050
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
3cyclfrgrrn1.v 𝑉 = (Vtx‘𝐺)
3cyclfrgrrn1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3cyclfrgrrn ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Distinct variable groups:   𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎   𝑉,𝑎,𝑏,𝑐   𝐺,𝑏,𝑐,𝑎

Proof of Theorem 3cyclfrgrrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3cyclfrgrrn1.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
21fvexi 6657 . . . . . . . 8 𝑉 ∈ V
3 hashgt12el2 13768 . . . . . . . 8 ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
42, 3mp3an1 1445 . . . . . . 7 ((1 < (♯‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
5 simpr 488 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph )
6 pm3.22 463 . . . . . . . . . . . 12 ((𝑥𝑉𝑎𝑉) → (𝑎𝑉𝑥𝑉))
763adant2 1128 . . . . . . . . . . 11 ((𝑥𝑉𝑎𝑥𝑎𝑉) → (𝑎𝑉𝑥𝑉))
87adantr 484 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎𝑉𝑥𝑉))
9 simpl2 1189 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎𝑥)
10 3cyclfrgrrn1.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
111, 103cyclfrgrrn1 28049 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
125, 8, 9, 11syl3anc 1368 . . . . . . . . 9 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
13123exp1 1349 . . . . . . . 8 (𝑥𝑉 → (𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1413rexlimiv 3266 . . . . . . 7 (∃𝑥𝑉 𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
154, 14syl 17 . . . . . 6 ((1 < (♯‘𝑉) ∧ 𝑎𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1615expcom 417 . . . . 5 (𝑎𝑉 → (1 < (♯‘𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1716pm2.43a 54 . . . 4 (𝑎𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1817com13 88 . . 3 (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1918imp 410 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
2019ralrimiv 3169 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  wrex 3127  Vcvv 3471  {cpr 4542   class class class wbr 5039  cfv 6328  1c1 10515   < clt 10652  chash 13674  Vtxcvtx 26768  Edgcedg 26819   FriendGraph cfrgr 28022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-hash 13675  df-edg 26820  df-umgr 26855  df-usgr 26923  df-frgr 28023
This theorem is referenced by:  3cyclfrgrrn2  28051  3cyclfrgr  28052
  Copyright terms: Public domain W3C validator