![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cyclfrgrrn | Structured version Visualization version GIF version |
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
3cyclfrgrrn1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3cyclfrgrrn1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
3cyclfrgrrn | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cyclfrgrrn1.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6902 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
3 | hashgt12el2 14379 | . . . . . . . 8 ⊢ ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑎 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥) | |
4 | 2, 3 | mp3an1 1448 | . . . . . . 7 ⊢ ((1 < (♯‘𝑉) ∧ 𝑎 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥) |
5 | simpr 485 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph ) | |
6 | pm3.22 460 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) | |
7 | 6 | 3adant2 1131 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
8 | 7 | adantr 481 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
9 | simpl2 1192 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎 ≠ 𝑥) | |
10 | 3cyclfrgrrn1.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
11 | 1, 10 | 3cyclfrgrrn1 29527 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) ∧ 𝑎 ≠ 𝑥) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
12 | 5, 8, 9, 11 | syl3anc 1371 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
13 | 12 | 3exp1 1352 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑉 → (𝑎 ≠ 𝑥 → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))) |
14 | 13 | rexlimiv 3148 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥 → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
15 | 4, 14 | syl 17 | . . . . . 6 ⊢ ((1 < (♯‘𝑉) ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
16 | 15 | expcom 414 | . . . . 5 ⊢ (𝑎 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))) |
17 | 16 | pm2.43a 54 | . . . 4 ⊢ (𝑎 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
18 | 17 | com13 88 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → (𝑎 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
19 | 18 | imp 407 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑎 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
20 | 19 | ralrimiv 3145 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 Vcvv 3474 {cpr 4629 class class class wbr 5147 ‘cfv 6540 1c1 11107 < clt 11244 ♯chash 14286 Vtxcvtx 28245 Edgcedg 28296 FriendGraph cfrgr 29500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28297 df-umgr 28332 df-usgr 28400 df-frgr 29501 |
This theorem is referenced by: 3cyclfrgrrn2 29529 3cyclfrgr 29530 |
Copyright terms: Public domain | W3C validator |