![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cyclfrgrrn | Structured version Visualization version GIF version |
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
3cyclfrgrrn1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3cyclfrgrrn1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
3cyclfrgrrn | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cyclfrgrrn1.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6904 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
3 | hashgt12el2 14409 | . . . . . . . 8 ⊢ ((𝑉 ∈ V ∧ 1 < (♯‘𝑉) ∧ 𝑎 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥) | |
4 | 2, 3 | mp3an1 1444 | . . . . . . 7 ⊢ ((1 < (♯‘𝑉) ∧ 𝑎 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥) |
5 | simpr 483 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph ) | |
6 | pm3.22 458 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) | |
7 | 6 | 3adant2 1128 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
8 | 7 | adantr 479 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
9 | simpl2 1189 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎 ≠ 𝑥) | |
10 | 3cyclfrgrrn1.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
11 | 1, 10 | 3cyclfrgrrn1 30134 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) ∧ 𝑎 ≠ 𝑥) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
12 | 5, 8, 9, 11 | syl3anc 1368 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
13 | 12 | 3exp1 1349 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑉 → (𝑎 ≠ 𝑥 → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))) |
14 | 13 | rexlimiv 3138 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥 → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
15 | 4, 14 | syl 17 | . . . . . 6 ⊢ ((1 < (♯‘𝑉) ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
16 | 15 | expcom 412 | . . . . 5 ⊢ (𝑎 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))) |
17 | 16 | pm2.43a 54 | . . . 4 ⊢ (𝑎 ∈ 𝑉 → (1 < (♯‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
18 | 17 | com13 88 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (1 < (♯‘𝑉) → (𝑎 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
19 | 18 | imp 405 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑎 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
20 | 19 | ralrimiv 3135 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 Vcvv 3463 {cpr 4627 class class class wbr 5144 ‘cfv 6543 1c1 11134 < clt 11273 ♯chash 14316 Vtxcvtx 28848 Edgcedg 28899 FriendGraph cfrgr 30107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-hash 14317 df-edg 28900 df-umgr 28935 df-usgr 29003 df-frgr 30108 |
This theorem is referenced by: 3cyclfrgrrn2 30136 3cyclfrgr 30137 |
Copyright terms: Public domain | W3C validator |