MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulginvcom Structured version   Visualization version   GIF version

Theorem mulginvcom 19087
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b 𝐵 = (Base‘𝐺)
mulginvcom.t · = (.g𝐺)
mulginvcom.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulginvcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulginvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
2 fvoveq1 7433 . . . . . 6 (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋)))
31, 2eqeq12d 2752 . . . . 5 (𝑥 = 0 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋))))
4 oveq1 7417 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝐼𝑋)) = (𝑦 · (𝐼𝑋)))
5 fvoveq1 7433 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋)))
64, 5eqeq12d 2752 . . . . 5 (𝑥 = 𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))))
7 oveq1 7417 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑦 + 1) · (𝐼𝑋)))
8 fvoveq1 7433 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
97, 8eqeq12d 2752 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))
10 oveq1 7417 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝐼𝑋)) = (-𝑦 · (𝐼𝑋)))
11 fvoveq1 7433 . . . . . 6 (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
1210, 11eqeq12d 2752 . . . . 5 (𝑥 = -𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))
13 oveq1 7417 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
14 fvoveq1 7433 . . . . . 6 (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋)))
1513, 14eqeq12d 2752 . . . . 5 (𝑥 = 𝑁 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
16 eqid 2736 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
17 mulginvcom.i . . . . . . . . 9 𝐼 = (invg𝐺)
1816, 17grpinvid 18987 . . . . . . . 8 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
1918eqcomd 2742 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) = (𝐼‘(0g𝐺)))
2019adantr 480 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0g𝐺) = (𝐼‘(0g𝐺)))
21 mulginvcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2221, 17grpinvcl 18975 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
23 mulginvcom.t . . . . . . . 8 · = (.g𝐺)
2421, 16, 23mulg0 19062 . . . . . . 7 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
2522, 24syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
2621, 16, 23mulg0 19062 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 481 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827fveq2d 6885 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g𝐺)))
2920, 25, 283eqtr4d 2781 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋)))
30 oveq2 7418 . . . . . . . . . 10 ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
3130adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
32 grpmnd 18928 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
33323ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Mnd)
34 simp2 1137 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℕ0)
35223adant2 1131 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
36 eqid 2736 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
3721, 23, 36mulgnn0p1 19073 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
3833, 34, 35, 37syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
39 simp1 1136 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Grp)
40 nn0z 12618 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
41403ad2ant2 1134 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℤ)
4221, 23, 36mulgaddcom 19086 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4339, 41, 35, 42syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4438, 43eqtrd 2771 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4544adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4621, 23, 36mulgnn0p1 19073 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4732, 46syl3an1 1163 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4847fveq2d 6885 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)))
4921, 23mulgcl 19079 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5040, 49syl3an2 1164 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5121, 36, 17grpinvadd 19006 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5250, 51syld3an2 1413 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5348, 52eqtrd 2771 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5453adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5531, 45, 543eqtr4d 2781 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
56553exp1 1353 . . . . . . 7 (𝐺 ∈ Grp → (𝑦 ∈ ℕ0 → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5756com23 86 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5857imp 406 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))
59 nnz 12614 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
60223adant2 1131 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
6121, 23, 17mulgneg 19080 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6260, 61syld3an3 1411 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6362adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6421, 23, 17mulgneg 19080 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
6564adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
66 simpr 484 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)))
6765, 66eqtr4d 2774 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼𝑋)))
6867fveq2d 6885 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6963, 68eqtr4d 2774 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
70693exp1 1353 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7170com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7271imp 406 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
7359, 72syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
743, 6, 9, 12, 15, 29, 58, 73zindd 12699 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
7574ex 412 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
7675com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
77763imp 1110 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  -cneg 11472  cn 12245  0cn0 12506  cz 12593  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Mndcmnd 18717  Grpcgrp 18921  invgcminusg 18922  .gcmg 19055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-mulg 19056
This theorem is referenced by:  mulginvinv  19088  mulgsubdi  19815
  Copyright terms: Public domain W3C validator