MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulginvcom Structured version   Visualization version   GIF version

Theorem mulginvcom 18728
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b 𝐵 = (Base‘𝐺)
mulginvcom.t · = (.g𝐺)
mulginvcom.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulginvcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulginvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
2 fvoveq1 7298 . . . . . 6 (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋)))
31, 2eqeq12d 2754 . . . . 5 (𝑥 = 0 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋))))
4 oveq1 7282 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝐼𝑋)) = (𝑦 · (𝐼𝑋)))
5 fvoveq1 7298 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋)))
64, 5eqeq12d 2754 . . . . 5 (𝑥 = 𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))))
7 oveq1 7282 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑦 + 1) · (𝐼𝑋)))
8 fvoveq1 7298 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
97, 8eqeq12d 2754 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))
10 oveq1 7282 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝐼𝑋)) = (-𝑦 · (𝐼𝑋)))
11 fvoveq1 7298 . . . . . 6 (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
1210, 11eqeq12d 2754 . . . . 5 (𝑥 = -𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))
13 oveq1 7282 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
14 fvoveq1 7298 . . . . . 6 (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋)))
1513, 14eqeq12d 2754 . . . . 5 (𝑥 = 𝑁 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
16 eqid 2738 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
17 mulginvcom.i . . . . . . . . 9 𝐼 = (invg𝐺)
1816, 17grpinvid 18636 . . . . . . . 8 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
1918eqcomd 2744 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) = (𝐼‘(0g𝐺)))
2019adantr 481 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0g𝐺) = (𝐼‘(0g𝐺)))
21 mulginvcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2221, 17grpinvcl 18627 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
23 mulginvcom.t . . . . . . . 8 · = (.g𝐺)
2421, 16, 23mulg0 18707 . . . . . . 7 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
2522, 24syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
2621, 16, 23mulg0 18707 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 482 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827fveq2d 6778 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g𝐺)))
2920, 25, 283eqtr4d 2788 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋)))
30 oveq2 7283 . . . . . . . . . 10 ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
3130adantl 482 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
32 grpmnd 18584 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
33323ad2ant1 1132 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Mnd)
34 simp2 1136 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℕ0)
35223adant2 1130 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
36 eqid 2738 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
3721, 23, 36mulgnn0p1 18715 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
3833, 34, 35, 37syl3anc 1370 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
39 simp1 1135 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Grp)
40 nn0z 12343 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
41403ad2ant2 1133 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℤ)
4221, 23, 36mulgaddcom 18727 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4339, 41, 35, 42syl3anc 1370 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4438, 43eqtrd 2778 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4544adantr 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4621, 23, 36mulgnn0p1 18715 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4732, 46syl3an1 1162 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4847fveq2d 6778 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)))
4921, 23mulgcl 18721 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5040, 49syl3an2 1163 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5121, 36, 17grpinvadd 18653 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5250, 51syld3an2 1410 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5348, 52eqtrd 2778 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5453adantr 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5531, 45, 543eqtr4d 2788 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
56553exp1 1351 . . . . . . 7 (𝐺 ∈ Grp → (𝑦 ∈ ℕ0 → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5756com23 86 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5857imp 407 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))
59 nnz 12342 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
60223adant2 1130 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
6121, 23, 17mulgneg 18722 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6260, 61syld3an3 1408 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6362adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6421, 23, 17mulgneg 18722 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
6564adantr 481 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
66 simpr 485 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)))
6765, 66eqtr4d 2781 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼𝑋)))
6867fveq2d 6778 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6963, 68eqtr4d 2781 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
70693exp1 1351 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7170com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7271imp 407 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
7359, 72syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
743, 6, 9, 12, 15, 29, 58, 73zindd 12421 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
7574ex 413 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
7675com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
77763imp 1110 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  -cneg 11206  cn 11973  0cn0 12233  cz 12319  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  Grpcgrp 18577  invgcminusg 18578  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701
This theorem is referenced by:  mulginvinv  18729  mulgsubdi  19431
  Copyright terms: Public domain W3C validator