| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑥 · (𝐼‘𝑋)) = (0 · (𝐼‘𝑋))) |
| 2 | | fvoveq1 7433 |
. . . . . 6
⊢ (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋))) |
| 3 | 1, 2 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = 0 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼‘𝑋)) = (𝐼‘(0 · 𝑋)))) |
| 4 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 · (𝐼‘𝑋)) = (𝑦 · (𝐼‘𝑋))) |
| 5 | | fvoveq1 7433 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋))) |
| 6 | 4, 5 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)))) |
| 7 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼‘𝑋)) = ((𝑦 + 1) · (𝐼‘𝑋))) |
| 8 | | fvoveq1 7433 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))) |
| 9 | 7, 8 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))) |
| 10 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = -𝑦 → (𝑥 · (𝐼‘𝑋)) = (-𝑦 · (𝐼‘𝑋))) |
| 11 | | fvoveq1 7433 |
. . . . . 6
⊢ (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋))) |
| 12 | 10, 11 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = -𝑦 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋)))) |
| 13 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 · (𝐼‘𝑋)) = (𝑁 · (𝐼‘𝑋))) |
| 14 | | fvoveq1 7433 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋))) |
| 15 | 13, 14 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋)))) |
| 16 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 17 | | mulginvcom.i |
. . . . . . . . 9
⊢ 𝐼 = (invg‘𝐺) |
| 18 | 16, 17 | grpinvid 18987 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → (𝐼‘(0g‘𝐺)) = (0g‘𝐺)) |
| 19 | 18 | eqcomd 2742 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(0g‘𝐺) =
(𝐼‘(0g‘𝐺))) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = (𝐼‘(0g‘𝐺))) |
| 21 | | mulginvcom.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 22 | 21, 17 | grpinvcl 18975 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
| 23 | | mulginvcom.t |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
| 24 | 21, 16, 23 | mulg0 19062 |
. . . . . . 7
⊢ ((𝐼‘𝑋) ∈ 𝐵 → (0 · (𝐼‘𝑋)) = (0g‘𝐺)) |
| 25 | 22, 24 | syl 17 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · (𝐼‘𝑋)) = (0g‘𝐺)) |
| 26 | 21, 16, 23 | mulg0 19062 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 27 | 26 | adantl 481 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
| 28 | 27 | fveq2d 6885 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g‘𝐺))) |
| 29 | 20, 25, 28 | 3eqtr4d 2781 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · (𝐼‘𝑋)) = (𝐼‘(0 · 𝑋))) |
| 30 | | oveq2 7418 |
. . . . . . . . . 10
⊢ ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋))) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) |
| 31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋))) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) |
| 32 | | grpmnd 18928 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 33 | 32 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Mnd) |
| 34 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝑦 ∈ ℕ0) |
| 35 | 22 | 3adant2 1131 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
| 36 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 37 | 21, 23, 36 | mulgnn0p1 19073 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ (𝐼‘𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) |
| 38 | 33, 34, 35, 37 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) |
| 39 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) |
| 40 | | nn0z 12618 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
| 41 | 40 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝑦 ∈ ℤ) |
| 42 | 21, 23, 36 | mulgaddcom 19086 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼‘𝑋) ∈ 𝐵) → ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) |
| 43 | 39, 41, 35, 42 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) |
| 44 | 38, 43 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) |
| 45 | 44 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) |
| 46 | 21, 23, 36 | mulgnn0p1 19073 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝐺)𝑋)) |
| 47 | 32, 46 | syl3an1 1163 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝐺)𝑋)) |
| 48 | 47 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g‘𝐺)𝑋))) |
| 49 | 21, 23 | mulgcl 19079 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) |
| 50 | 40, 49 | syl3an2 1164 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) |
| 51 | 21, 36, 17 | grpinvadd 19006 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 · 𝑋)(+g‘𝐺)𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) |
| 52 | 50, 51 | syld3an2 1413 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 · 𝑋)(+g‘𝐺)𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) |
| 53 | 48, 52 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) |
| 54 | 53 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) |
| 55 | 31, 45, 54 | 3eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))) |
| 56 | 55 | 3exp1 1353 |
. . . . . . 7
⊢ (𝐺 ∈ Grp → (𝑦 ∈ ℕ0
→ (𝑋 ∈ 𝐵 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))) |
| 57 | 56 | com23 86 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))) |
| 58 | 57 | imp 406 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))) |
| 59 | | nnz 12614 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
| 60 | 22 | 3adant2 1131 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
| 61 | 21, 23, 17 | mulgneg 19080 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼‘𝑋) ∈ 𝐵) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) |
| 62 | 60, 61 | syld3an3 1411 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) |
| 63 | 62 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) |
| 64 | 21, 23, 17 | mulgneg 19080 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋))) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋))) |
| 66 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) |
| 67 | 65, 66 | eqtr4d 2774 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼‘𝑋))) |
| 68 | 67 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) |
| 69 | 63, 68 | eqtr4d 2774 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋))) |
| 70 | 69 | 3exp1 1353 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋 ∈ 𝐵 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))) |
| 71 | 70 | com23 86 |
. . . . . . 7
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))) |
| 72 | 71 | imp 406 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋))))) |
| 73 | 59, 72 | syl5 34 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋))))) |
| 74 | 3, 6, 9, 12, 15, 29, 58, 73 | zindd 12699 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋)))) |
| 75 | 74 | ex 412 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))))) |
| 76 | 75 | com23 86 |
. 2
⊢ (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋 ∈ 𝐵 → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))))) |
| 77 | 76 | 3imp 1110 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))) |