MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulginvcom Structured version   Visualization version   GIF version

Theorem mulginvcom 18252
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b 𝐵 = (Base‘𝐺)
mulginvcom.t · = (.g𝐺)
mulginvcom.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulginvcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulginvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7163 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
2 fvoveq1 7179 . . . . . 6 (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋)))
31, 2eqeq12d 2837 . . . . 5 (𝑥 = 0 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋))))
4 oveq1 7163 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝐼𝑋)) = (𝑦 · (𝐼𝑋)))
5 fvoveq1 7179 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋)))
64, 5eqeq12d 2837 . . . . 5 (𝑥 = 𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))))
7 oveq1 7163 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑦 + 1) · (𝐼𝑋)))
8 fvoveq1 7179 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
97, 8eqeq12d 2837 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))
10 oveq1 7163 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝐼𝑋)) = (-𝑦 · (𝐼𝑋)))
11 fvoveq1 7179 . . . . . 6 (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
1210, 11eqeq12d 2837 . . . . 5 (𝑥 = -𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))
13 oveq1 7163 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
14 fvoveq1 7179 . . . . . 6 (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋)))
1513, 14eqeq12d 2837 . . . . 5 (𝑥 = 𝑁 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
16 eqid 2821 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
17 mulginvcom.i . . . . . . . . 9 𝐼 = (invg𝐺)
1816, 17grpinvid 18160 . . . . . . . 8 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
1918eqcomd 2827 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) = (𝐼‘(0g𝐺)))
2019adantr 483 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0g𝐺) = (𝐼‘(0g𝐺)))
21 mulginvcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2221, 17grpinvcl 18151 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
23 mulginvcom.t . . . . . . . 8 · = (.g𝐺)
2421, 16, 23mulg0 18231 . . . . . . 7 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
2522, 24syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
2621, 16, 23mulg0 18231 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 484 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827fveq2d 6674 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g𝐺)))
2920, 25, 283eqtr4d 2866 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋)))
30 oveq2 7164 . . . . . . . . . 10 ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
3130adantl 484 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
32 grpmnd 18110 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
33323ad2ant1 1129 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Mnd)
34 simp2 1133 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℕ0)
35223adant2 1127 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
36 eqid 2821 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
3721, 23, 36mulgnn0p1 18239 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
3833, 34, 35, 37syl3anc 1367 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
39 simp1 1132 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Grp)
40 nn0z 12006 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
41403ad2ant2 1130 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℤ)
4221, 23, 36mulgaddcom 18251 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4339, 41, 35, 42syl3anc 1367 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4438, 43eqtrd 2856 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4544adantr 483 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4621, 23, 36mulgnn0p1 18239 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4732, 46syl3an1 1159 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4847fveq2d 6674 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)))
4921, 23mulgcl 18245 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5040, 49syl3an2 1160 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5121, 36, 17grpinvadd 18177 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5250, 51syld3an2 1407 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5348, 52eqtrd 2856 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5453adantr 483 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5531, 45, 543eqtr4d 2866 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
56553exp1 1348 . . . . . . 7 (𝐺 ∈ Grp → (𝑦 ∈ ℕ0 → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5756com23 86 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5857imp 409 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))
59 nnz 12005 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
60223adant2 1127 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
6121, 23, 17mulgneg 18246 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6260, 61syld3an3 1405 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6362adantr 483 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6421, 23, 17mulgneg 18246 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
6564adantr 483 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
66 simpr 487 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)))
6765, 66eqtr4d 2859 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼𝑋)))
6867fveq2d 6674 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6963, 68eqtr4d 2859 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
70693exp1 1348 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7170com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7271imp 409 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
7359, 72syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
743, 6, 9, 12, 15, 29, 58, 73zindd 12084 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
7574ex 415 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
7675com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
77763imp 1107 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  -cneg 10871  cn 11638  0cn0 11898  cz 11982  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Mndcmnd 17911  Grpcgrp 18103  invgcminusg 18104  .gcmg 18224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mulg 18225
This theorem is referenced by:  mulginvinv  18253  mulgsubdi  18950
  Copyright terms: Public domain W3C validator