MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulginvcom Structured version   Visualization version   GIF version

Theorem mulginvcom 19014
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b 𝐵 = (Base‘𝐺)
mulginvcom.t · = (.g𝐺)
mulginvcom.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulginvcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulginvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
2 fvoveq1 7375 . . . . . 6 (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋)))
31, 2eqeq12d 2749 . . . . 5 (𝑥 = 0 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋))))
4 oveq1 7359 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝐼𝑋)) = (𝑦 · (𝐼𝑋)))
5 fvoveq1 7375 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋)))
64, 5eqeq12d 2749 . . . . 5 (𝑥 = 𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))))
7 oveq1 7359 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑦 + 1) · (𝐼𝑋)))
8 fvoveq1 7375 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
97, 8eqeq12d 2749 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))
10 oveq1 7359 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝐼𝑋)) = (-𝑦 · (𝐼𝑋)))
11 fvoveq1 7375 . . . . . 6 (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
1210, 11eqeq12d 2749 . . . . 5 (𝑥 = -𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))
13 oveq1 7359 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
14 fvoveq1 7375 . . . . . 6 (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋)))
1513, 14eqeq12d 2749 . . . . 5 (𝑥 = 𝑁 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
16 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
17 mulginvcom.i . . . . . . . . 9 𝐼 = (invg𝐺)
1816, 17grpinvid 18914 . . . . . . . 8 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
1918eqcomd 2739 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) = (𝐼‘(0g𝐺)))
2019adantr 480 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0g𝐺) = (𝐼‘(0g𝐺)))
21 mulginvcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2221, 17grpinvcl 18902 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
23 mulginvcom.t . . . . . . . 8 · = (.g𝐺)
2421, 16, 23mulg0 18989 . . . . . . 7 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
2522, 24syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
2621, 16, 23mulg0 18989 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 481 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827fveq2d 6832 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g𝐺)))
2920, 25, 283eqtr4d 2778 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋)))
30 oveq2 7360 . . . . . . . . . 10 ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
3130adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
32 grpmnd 18855 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
33323ad2ant1 1133 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Mnd)
34 simp2 1137 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℕ0)
35223adant2 1131 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
36 eqid 2733 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
3721, 23, 36mulgnn0p1 19000 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
3833, 34, 35, 37syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
39 simp1 1136 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Grp)
40 nn0z 12499 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
41403ad2ant2 1134 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℤ)
4221, 23, 36mulgaddcom 19013 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4339, 41, 35, 42syl3anc 1373 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4438, 43eqtrd 2768 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4544adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4621, 23, 36mulgnn0p1 19000 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4732, 46syl3an1 1163 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4847fveq2d 6832 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)))
4921, 23mulgcl 19006 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5040, 49syl3an2 1164 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5121, 36, 17grpinvadd 18933 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5250, 51syld3an2 1413 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5348, 52eqtrd 2768 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5453adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5531, 45, 543eqtr4d 2778 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
56553exp1 1353 . . . . . . 7 (𝐺 ∈ Grp → (𝑦 ∈ ℕ0 → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5756com23 86 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5857imp 406 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))
59 nnz 12496 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
60223adant2 1131 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
6121, 23, 17mulgneg 19007 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6260, 61syld3an3 1411 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6362adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6421, 23, 17mulgneg 19007 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
6564adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
66 simpr 484 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)))
6765, 66eqtr4d 2771 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼𝑋)))
6867fveq2d 6832 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6963, 68eqtr4d 2771 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
70693exp1 1353 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7170com23 86 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7271imp 406 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
7359, 72syl5 34 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
743, 6, 9, 12, 15, 29, 58, 73zindd 12580 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
7574ex 412 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
7675com23 86 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
77763imp 1110 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  -cneg 11352  cn 12132  0cn0 12388  cz 12475  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Mndcmnd 18644  Grpcgrp 18848  invgcminusg 18849  .gcmg 18982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-mulg 18983
This theorem is referenced by:  mulginvinv  19015  mulgsubdi  19743
  Copyright terms: Public domain W3C validator