Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.) |
Ref | Expression |
---|---|
3xpexg | ⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7485 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ∈ 𝑊) → (𝑉 × 𝑉) ∈ V) | |
2 | 1 | anidms 570 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝑉 × 𝑉) ∈ V) |
3 | xpexg 7485 | . 2 ⊢ (((𝑉 × 𝑉) ∈ V ∧ 𝑉 ∈ 𝑊) → ((𝑉 × 𝑉) × 𝑉) ∈ V) | |
4 | 2, 3 | mpancom 688 | 1 ⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3397 × cxp 5517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-opab 5090 df-xp 5525 df-rel 5526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |