MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3xpexg Structured version   Visualization version   GIF version

Theorem 3xpexg 7487
Description: The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.)
Assertion
Ref Expression
3xpexg (𝑉𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V)

Proof of Theorem 3xpexg
StepHypRef Expression
1 xpexg 7485 . . 3 ((𝑉𝑊𝑉𝑊) → (𝑉 × 𝑉) ∈ V)
21anidms 570 . 2 (𝑉𝑊 → (𝑉 × 𝑉) ∈ V)
3 xpexg 7485 . 2 (((𝑉 × 𝑉) ∈ V ∧ 𝑉𝑊) → ((𝑉 × 𝑉) × 𝑉) ∈ V)
42, 3mpancom 688 1 (𝑉𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3397   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-opab 5090  df-xp 5525  df-rel 5526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator