MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3xpexg Structured version   Visualization version   GIF version

Theorem 3xpexg 7755
Description: The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.)
Assertion
Ref Expression
3xpexg (𝑉𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V)

Proof of Theorem 3xpexg
StepHypRef Expression
1 xpexg 7753 . . 3 ((𝑉𝑊𝑉𝑊) → (𝑉 × 𝑉) ∈ V)
21anidms 566 . 2 (𝑉𝑊 → (𝑉 × 𝑉) ∈ V)
3 xpexg 7753 . 2 (((𝑉 × 𝑉) ∈ V ∧ 𝑉𝑊) → ((𝑉 × 𝑉) × 𝑉) ∈ V)
42, 3mpancom 688 1 (𝑉𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3464   × cxp 5665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-opab 5188  df-xp 5673  df-rel 5674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator