MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3xpexg Structured version   Visualization version   GIF version

Theorem 3xpexg 7771
Description: The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.)
Assertion
Ref Expression
3xpexg (𝑉𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V)

Proof of Theorem 3xpexg
StepHypRef Expression
1 xpexg 7769 . . 3 ((𝑉𝑊𝑉𝑊) → (𝑉 × 𝑉) ∈ V)
21anidms 566 . 2 (𝑉𝑊 → (𝑉 × 𝑉) ∈ V)
3 xpexg 7769 . 2 (((𝑉 × 𝑉) ∈ V ∧ 𝑉𝑊) → ((𝑉 × 𝑉) × 𝑉) ∈ V)
42, 3mpancom 688 1 (𝑉𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-opab 5211  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator