| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of three sets is a set. (Contributed by Alexander van der Vekens, 21-Feb-2018.) |
| Ref | Expression |
|---|---|
| 3xpexg | ⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7728 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ∈ 𝑊) → (𝑉 × 𝑉) ∈ V) | |
| 2 | 1 | anidms 566 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝑉 × 𝑉) ∈ V) |
| 3 | xpexg 7728 | . 2 ⊢ (((𝑉 × 𝑉) ∈ V ∧ 𝑉 ∈ 𝑊) → ((𝑉 × 𝑉) × 𝑉) ∈ V) | |
| 4 | 2, 3 | mpancom 688 | 1 ⊢ (𝑉 ∈ 𝑊 → ((𝑉 × 𝑉) × 𝑉) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 × cxp 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-opab 5172 df-xp 5646 df-rel 5647 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |