| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | xpexg 7689 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: cnvexg 7860 fabexd 7873 cofunexg 7887 oprabexd 7913 ofmresex 7923 opabex2 7995 offval22 8024 sexp2 8082 sexp3 8089 tposexg 8176 mapunen 9066 marypha1 9325 wdom2d 9473 ixpiunwdom 9483 ttrclexg 9620 fnct 10435 fpwwe2lem2 10530 fpwwe2lem4 10532 fpwwe2lem11 10539 fpwwelem 10543 canthwe 10549 pwxpndom 10564 gchhar 10577 trclexlem 14903 isacs1i 17565 brcic 17707 rescval2 17737 reschom 17739 rescabs 17742 setccofval 17991 estrccofval 18037 sylow2a 19533 gsumxp 19890 gsumxp2 19894 opsrval 21982 opsrtoslem2 21992 evlslem4 22012 matbas2d 22339 tsmsxp 24071 ustssel 24122 ustfilxp 24129 trust 24145 restutop 24153 trcfilu 24209 cfiluweak 24210 imasdsf1olem 24289 metustfbas 24473 restmetu 24486 rrxsca 25324 madeval 27794 perpln1 28689 perpln2 28690 isperp 28691 suppovss 32666 fsuppcurry1 32711 fsuppcurry2 32712 hashxpe 32794 gsumpart 33044 gsumwrd2dccat 33054 elrgspnlem2 33217 elrgspnsubrunlem2 33222 erlval 33232 rlocval 33233 rlocbas 33241 rlocaddval 33242 rlocmulval 33243 fedgmullem1 33663 fedgmullem2 33664 fedgmul 33665 metidval 33924 esumiun 34128 filnetlem3 36445 numiunnum 36535 bj-imdirvallem 37245 bj-imdirval2 37248 bj-imdirco 37255 bj-iminvval2 37259 isrngod 37958 isgrpda 38015 iscringd 38058 aks6d1c6lem2 42284 evlsevl 42689 wdom2d2 43152 unxpwdom3 43212 trclubgNEW 43735 relexpxpmin 43834 rfovd 44118 rfovcnvf1od 44121 fsovrfovd 44126 dvsinax 46035 sge0xp 46551 gpgvtx 48167 gpgiedg 48168 imasubclem1 49229 fucofvalg 49443 |
| Copyright terms: Public domain | W3C validator |