![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 7768 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-opab 5210 df-xp 5694 df-rel 5695 |
This theorem is referenced by: cnvexg 7946 fabexd 7957 cofunexg 7971 oprabexd 7998 ofmresex 8008 opabex2 8080 offval22 8111 sexp2 8169 sexp3 8176 tposexg 8263 mapunen 9184 marypha1 9471 wdom2d 9617 ixpiunwdom 9627 ttrclexg 9760 fnct 10574 fpwwe2lem2 10669 fpwwe2lem4 10671 fpwwe2lem11 10678 fpwwelem 10682 canthwe 10688 pwxpndom 10703 gchhar 10716 trclexlem 15029 isacs1i 17701 brcic 17845 rescval2 17875 reschom 17878 rescabs 17882 rescabsOLD 17883 setccofval 18135 estrccofval 18183 sylow2a 19651 gsumxp 20008 gsumxp2 20012 opsrval 22081 opsrtoslem2 22097 evlslem4 22117 matbas2d 22444 tsmsxp 24178 ustssel 24229 ustfilxp 24236 trust 24253 restutop 24261 trcfilu 24318 cfiluweak 24319 imasdsf1olem 24398 metustfbas 24585 restmetu 24598 rrxsca 25443 madeval 27905 perpln1 28732 perpln2 28733 isperp 28734 suppovss 32695 fsuppcurry1 32742 fsuppcurry2 32743 hashxpe 32816 gsumpart 33042 gsumwrd2dccat 33052 elrgspnlem2 33232 erlval 33244 rlocval 33245 rlocbas 33253 rlocaddval 33254 rlocmulval 33255 fedgmullem1 33656 fedgmullem2 33657 fedgmul 33658 metidval 33850 esumiun 34074 filnetlem3 36362 numiunnum 36452 bj-imdirvallem 37162 bj-imdirval2 37165 bj-imdirco 37172 bj-iminvval2 37176 isrngod 37884 isgrpda 37941 iscringd 37984 aks6d1c6lem2 42152 evlsevl 42557 wdom2d2 43023 unxpwdom3 43083 trclubgNEW 43607 relexpxpmin 43706 rfovd 43990 rfovcnvf1od 43993 fsovrfovd 43998 dvsinax 45868 sge0xp 46384 gpgvtx 47937 gpgiedg 47938 |
Copyright terms: Public domain | W3C validator |