| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | xpexg 7729 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: cnvexg 7903 fabexd 7916 cofunexg 7930 oprabexd 7957 ofmresex 7967 opabex2 8039 offval22 8070 sexp2 8128 sexp3 8135 tposexg 8222 mapunen 9116 marypha1 9392 wdom2d 9540 ixpiunwdom 9550 ttrclexg 9683 fnct 10497 fpwwe2lem2 10592 fpwwe2lem4 10594 fpwwe2lem11 10601 fpwwelem 10605 canthwe 10611 pwxpndom 10626 gchhar 10639 trclexlem 14967 isacs1i 17625 brcic 17767 rescval2 17797 reschom 17799 rescabs 17802 setccofval 18051 estrccofval 18097 sylow2a 19556 gsumxp 19913 gsumxp2 19917 opsrval 21960 opsrtoslem2 21970 evlslem4 21990 matbas2d 22317 tsmsxp 24049 ustssel 24100 ustfilxp 24107 trust 24124 restutop 24132 trcfilu 24188 cfiluweak 24189 imasdsf1olem 24268 metustfbas 24452 restmetu 24465 rrxsca 25303 madeval 27767 perpln1 28644 perpln2 28645 isperp 28646 suppovss 32611 fsuppcurry1 32655 fsuppcurry2 32656 hashxpe 32739 gsumpart 33004 gsumwrd2dccat 33014 elrgspnlem2 33201 elrgspnsubrunlem2 33206 erlval 33216 rlocval 33217 rlocbas 33225 rlocaddval 33226 rlocmulval 33227 fedgmullem1 33632 fedgmullem2 33633 fedgmul 33634 metidval 33887 esumiun 34091 filnetlem3 36375 numiunnum 36465 bj-imdirvallem 37175 bj-imdirval2 37178 bj-imdirco 37185 bj-iminvval2 37189 isrngod 37899 isgrpda 37956 iscringd 37999 aks6d1c6lem2 42166 evlsevl 42566 wdom2d2 43031 unxpwdom3 43091 trclubgNEW 43614 relexpxpmin 43713 rfovd 43997 rfovcnvf1od 44000 fsovrfovd 44005 dvsinax 45918 sge0xp 46434 gpgvtx 48038 gpgiedg 48039 imasubclem1 49097 fucofvalg 49311 |
| Copyright terms: Public domain | W3C validator |