Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 7600 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: cnvexg 7771 cofunexg 7791 oprabexd 7818 ofmresex 7828 opabex2 7897 offval22 7928 tposexg 8056 mapunen 8933 marypha1 9193 wdom2d 9339 ixpiunwdom 9349 ttrclexg 9481 fnct 10293 fpwwe2lem2 10388 fpwwe2lem4 10390 fpwwe2lem11 10397 fpwwelem 10401 canthwe 10407 pwxpndom 10422 gchhar 10435 trclexlem 14705 isacs1i 17366 brcic 17510 rescval2 17540 reschom 17543 rescabs 17547 rescabsOLD 17548 setccofval 17797 estrccofval 17845 sylow2a 19224 gsumxp 19577 gsumxp2 19581 opsrval 21247 opsrtoslem2 21263 evlslem4 21284 matbas2d 21572 tsmsxp 23306 ustssel 23357 ustfilxp 23364 trust 23381 restutop 23389 trcfilu 23446 cfiluweak 23447 imasdsf1olem 23526 metustfbas 23713 restmetu 23726 rrxsca 24560 perpln1 27071 perpln2 27072 isperp 27073 suppovss 31017 fsuppcurry1 31060 fsuppcurry2 31061 hashxpe 31127 gsumpart 31315 fedgmullem1 31710 fedgmullem2 31711 fedgmul 31712 metidval 31840 esumiun 32062 sexp2 33793 sexp3 33799 madeval 34036 filnetlem3 34569 bj-imdirvallem 35351 bj-imdirval2 35354 bj-imdirco 35361 bj-iminvval2 35365 isrngod 36056 isgrpda 36113 iscringd 36156 evlsbagval 40275 wdom2d2 40857 unxpwdom3 40920 trclubgNEW 41226 relexpxpmin 41325 rfovd 41609 rfovcnvf1od 41612 fsovrfovd 41617 dvsinax 43454 sge0xp 43967 |
Copyright terms: Public domain | W3C validator |