Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 7594 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-opab 5142 df-xp 5596 df-rel 5597 |
This theorem is referenced by: cnvexg 7765 cofunexg 7785 oprabexd 7811 ofmresex 7821 opabex2 7890 offval22 7919 tposexg 8047 mapunen 8915 marypha1 9171 wdom2d 9317 ixpiunwdom 9327 ttrclexg 9459 fnct 10294 fpwwe2lem2 10389 fpwwe2lem4 10391 fpwwe2lem11 10398 fpwwelem 10402 canthwe 10408 pwxpndom 10423 gchhar 10436 trclexlem 14703 isacs1i 17364 brcic 17508 rescval2 17538 reschom 17541 rescabs 17545 rescabsOLD 17546 setccofval 17795 estrccofval 17843 sylow2a 19222 gsumxp 19575 gsumxp2 19579 opsrval 21245 opsrtoslem2 21261 evlslem4 21282 matbas2d 21570 tsmsxp 23304 ustssel 23355 ustfilxp 23362 trust 23379 restutop 23387 trcfilu 23444 cfiluweak 23445 imasdsf1olem 23524 metustfbas 23711 restmetu 23724 rrxsca 24558 perpln1 27069 perpln2 27070 isperp 27071 suppovss 31013 fsuppcurry1 31056 fsuppcurry2 31057 hashxpe 31123 gsumpart 31311 fedgmullem1 31706 fedgmullem2 31707 fedgmul 31708 metidval 31836 esumiun 32058 sexp2 33789 sexp3 33795 madeval 34032 filnetlem3 34565 bj-imdirvallem 35347 bj-imdirval2 35350 bj-imdirco 35357 bj-iminvval2 35361 isrngod 36052 isgrpda 36109 iscringd 36152 evlsbagval 40272 wdom2d2 40854 unxpwdom3 40917 trclubgNEW 41196 relexpxpmin 41295 rfovd 41579 rfovcnvf1od 41582 fsovrfovd 41587 dvsinax 43425 sge0xp 43938 |
Copyright terms: Public domain | W3C validator |