| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | xpexg 7683 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: cnvexg 7854 fabexd 7867 cofunexg 7881 oprabexd 7907 ofmresex 7917 opabex2 7989 offval22 8018 sexp2 8076 sexp3 8083 tposexg 8170 mapunen 9059 marypha1 9318 wdom2d 9466 ixpiunwdom 9476 ttrclexg 9613 fnct 10425 fpwwe2lem2 10520 fpwwe2lem4 10522 fpwwe2lem11 10529 fpwwelem 10533 canthwe 10539 pwxpndom 10554 gchhar 10567 trclexlem 14898 isacs1i 17560 brcic 17702 rescval2 17732 reschom 17734 rescabs 17737 setccofval 17986 estrccofval 18032 sylow2a 19529 gsumxp 19886 gsumxp2 19890 opsrval 21979 opsrtoslem2 21989 evlslem4 22009 matbas2d 22336 tsmsxp 24068 ustssel 24119 ustfilxp 24126 trust 24142 restutop 24150 trcfilu 24206 cfiluweak 24207 imasdsf1olem 24286 metustfbas 24470 restmetu 24483 rrxsca 25321 madeval 27791 perpln1 28686 perpln2 28687 isperp 28688 suppovss 32657 fsuppcurry1 32702 fsuppcurry2 32703 hashxpe 32784 gsumpart 33032 gsumwrd2dccat 33042 elrgspnlem2 33205 elrgspnsubrunlem2 33210 erlval 33220 rlocval 33221 rlocbas 33229 rlocaddval 33230 rlocmulval 33231 fedgmullem1 33637 fedgmullem2 33638 fedgmul 33639 metidval 33898 esumiun 34102 filnetlem3 36413 numiunnum 36503 bj-imdirvallem 37213 bj-imdirval2 37216 bj-imdirco 37223 bj-iminvval2 37227 isrngod 37937 isgrpda 37994 iscringd 38037 aks6d1c6lem2 42203 evlsevl 42603 wdom2d2 43067 unxpwdom3 43127 trclubgNEW 43650 relexpxpmin 43749 rfovd 44033 rfovcnvf1od 44036 fsovrfovd 44041 dvsinax 45950 sge0xp 46466 gpgvtx 48073 gpgiedg 48074 imasubclem1 49135 fucofvalg 49349 |
| Copyright terms: Public domain | W3C validator |