| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | xpexg 7726 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: cnvexg 7900 fabexd 7913 cofunexg 7927 oprabexd 7954 ofmresex 7964 opabex2 8036 offval22 8067 sexp2 8125 sexp3 8132 tposexg 8219 mapunen 9110 marypha1 9385 wdom2d 9533 ixpiunwdom 9543 ttrclexg 9676 fnct 10490 fpwwe2lem2 10585 fpwwe2lem4 10587 fpwwe2lem11 10594 fpwwelem 10598 canthwe 10604 pwxpndom 10619 gchhar 10632 trclexlem 14960 isacs1i 17618 brcic 17760 rescval2 17790 reschom 17792 rescabs 17795 setccofval 18044 estrccofval 18090 sylow2a 19549 gsumxp 19906 gsumxp2 19910 opsrval 21953 opsrtoslem2 21963 evlslem4 21983 matbas2d 22310 tsmsxp 24042 ustssel 24093 ustfilxp 24100 trust 24117 restutop 24125 trcfilu 24181 cfiluweak 24182 imasdsf1olem 24261 metustfbas 24445 restmetu 24458 rrxsca 25296 madeval 27760 perpln1 28637 perpln2 28638 isperp 28639 suppovss 32604 fsuppcurry1 32648 fsuppcurry2 32649 hashxpe 32732 gsumpart 32997 gsumwrd2dccat 33007 elrgspnlem2 33194 elrgspnsubrunlem2 33199 erlval 33209 rlocval 33210 rlocbas 33218 rlocaddval 33219 rlocmulval 33220 fedgmullem1 33625 fedgmullem2 33626 fedgmul 33627 metidval 33880 esumiun 34084 filnetlem3 36368 numiunnum 36458 bj-imdirvallem 37168 bj-imdirval2 37171 bj-imdirco 37178 bj-iminvval2 37182 isrngod 37892 isgrpda 37949 iscringd 37992 aks6d1c6lem2 42159 evlsevl 42559 wdom2d2 43024 unxpwdom3 43084 trclubgNEW 43607 relexpxpmin 43706 rfovd 43990 rfovcnvf1od 43993 fsovrfovd 43998 dvsinax 45911 sge0xp 46427 gpgvtx 48034 gpgiedg 48035 imasubclem1 49093 fucofvalg 49307 |
| Copyright terms: Public domain | W3C validator |