| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | xpexg 7690 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: cnvexg 7864 fabexd 7877 cofunexg 7891 oprabexd 7917 ofmresex 7927 opabex2 7999 offval22 8028 sexp2 8086 sexp3 8093 tposexg 8180 mapunen 9070 marypha1 9343 wdom2d 9491 ixpiunwdom 9501 ttrclexg 9638 fnct 10450 fpwwe2lem2 10545 fpwwe2lem4 10547 fpwwe2lem11 10554 fpwwelem 10558 canthwe 10564 pwxpndom 10579 gchhar 10592 trclexlem 14919 isacs1i 17581 brcic 17723 rescval2 17753 reschom 17755 rescabs 17758 setccofval 18007 estrccofval 18053 sylow2a 19516 gsumxp 19873 gsumxp2 19877 opsrval 21969 opsrtoslem2 21979 evlslem4 21999 matbas2d 22326 tsmsxp 24058 ustssel 24109 ustfilxp 24116 trust 24133 restutop 24141 trcfilu 24197 cfiluweak 24198 imasdsf1olem 24277 metustfbas 24461 restmetu 24474 rrxsca 25312 madeval 27780 perpln1 28673 perpln2 28674 isperp 28675 suppovss 32637 fsuppcurry1 32681 fsuppcurry2 32682 hashxpe 32765 gsumpart 33023 gsumwrd2dccat 33033 elrgspnlem2 33193 elrgspnsubrunlem2 33198 erlval 33208 rlocval 33209 rlocbas 33217 rlocaddval 33218 rlocmulval 33219 fedgmullem1 33601 fedgmullem2 33602 fedgmul 33603 metidval 33856 esumiun 34060 filnetlem3 36353 numiunnum 36443 bj-imdirvallem 37153 bj-imdirval2 37156 bj-imdirco 37163 bj-iminvval2 37167 isrngod 37877 isgrpda 37934 iscringd 37977 aks6d1c6lem2 42144 evlsevl 42544 wdom2d2 43008 unxpwdom3 43068 trclubgNEW 43591 relexpxpmin 43690 rfovd 43974 rfovcnvf1od 43977 fsovrfovd 43982 dvsinax 45895 sge0xp 46411 gpgvtx 48028 gpgiedg 48029 imasubclem1 49090 fucofvalg 49304 |
| Copyright terms: Public domain | W3C validator |