| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | xpexg 7744 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: cnvexg 7920 fabexd 7933 cofunexg 7947 oprabexd 7974 ofmresex 7984 opabex2 8056 offval22 8087 sexp2 8145 sexp3 8152 tposexg 8239 mapunen 9160 marypha1 9446 wdom2d 9594 ixpiunwdom 9604 ttrclexg 9737 fnct 10551 fpwwe2lem2 10646 fpwwe2lem4 10648 fpwwe2lem11 10655 fpwwelem 10659 canthwe 10665 pwxpndom 10680 gchhar 10693 trclexlem 15013 isacs1i 17669 brcic 17811 rescval2 17841 reschom 17843 rescabs 17846 setccofval 18095 estrccofval 18141 sylow2a 19600 gsumxp 19957 gsumxp2 19961 opsrval 22004 opsrtoslem2 22014 evlslem4 22034 matbas2d 22361 tsmsxp 24093 ustssel 24144 ustfilxp 24151 trust 24168 restutop 24176 trcfilu 24232 cfiluweak 24233 imasdsf1olem 24312 metustfbas 24496 restmetu 24509 rrxsca 25348 madeval 27812 perpln1 28689 perpln2 28690 isperp 28691 suppovss 32658 fsuppcurry1 32702 fsuppcurry2 32703 hashxpe 32786 gsumpart 33051 gsumwrd2dccat 33061 elrgspnlem2 33238 elrgspnsubrunlem2 33243 erlval 33253 rlocval 33254 rlocbas 33262 rlocaddval 33263 rlocmulval 33264 fedgmullem1 33669 fedgmullem2 33670 fedgmul 33671 metidval 33921 esumiun 34125 filnetlem3 36398 numiunnum 36488 bj-imdirvallem 37198 bj-imdirval2 37201 bj-imdirco 37208 bj-iminvval2 37212 isrngod 37922 isgrpda 37979 iscringd 38022 aks6d1c6lem2 42184 evlsevl 42594 wdom2d2 43059 unxpwdom3 43119 trclubgNEW 43642 relexpxpmin 43741 rfovd 44025 rfovcnvf1od 44028 fsovrfovd 44033 dvsinax 45942 sge0xp 46458 gpgvtx 48047 gpgiedg 48048 imasubclem1 49063 fucofvalg 49229 |
| Copyright terms: Public domain | W3C validator |