Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexd | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
xpexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xpexd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
xpexd | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | xpexd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 7578 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: cnvexg 7745 cofunexg 7765 oprabexd 7791 ofmresex 7801 opabex2 7870 offval22 7899 tposexg 8027 mapunen 8882 marypha1 9123 wdom2d 9269 ixpiunwdom 9279 fnct 10224 fpwwe2lem2 10319 fpwwe2lem4 10321 fpwwe2lem11 10328 fpwwelem 10332 canthwe 10338 pwxpndom 10353 gchhar 10366 trclexlem 14633 isacs1i 17283 brcic 17427 rescval2 17457 reschom 17460 rescabs 17464 setccofval 17713 estrccofval 17761 sylow2a 19139 gsumxp 19492 gsumxp2 19496 opsrval 21157 opsrtoslem2 21173 evlslem4 21194 matbas2d 21480 tsmsxp 23214 ustssel 23265 ustfilxp 23272 trust 23289 restutop 23297 trcfilu 23354 cfiluweak 23355 imasdsf1olem 23434 metustfbas 23619 restmetu 23632 rrxsca 24465 perpln1 26975 perpln2 26976 isperp 26977 suppovss 30919 fsuppcurry1 30962 fsuppcurry2 30963 hashxpe 31029 gsumpart 31217 fedgmullem1 31612 fedgmullem2 31613 fedgmul 31614 metidval 31742 esumiun 31962 ttrclexg 33709 sexp2 33720 sexp3 33726 madeval 33963 filnetlem3 34496 bj-imdirvallem 35278 bj-imdirval2 35281 bj-imdirco 35288 bj-iminvval2 35292 isrngod 35983 isgrpda 36040 iscringd 36083 evlsbagval 40198 wdom2d2 40773 unxpwdom3 40836 trclubgNEW 41115 relexpxpmin 41214 rfovd 41498 rfovcnvf1od 41501 fsovrfovd 41506 dvsinax 43344 sge0xp 43857 |
Copyright terms: Public domain | W3C validator |