Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpex | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | ⊢ 𝐴 ∈ V |
xpex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpex | ⊢ (𝐴 × 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpexg 7491 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2114 Vcvv 3398 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-opab 5093 df-xp 5531 df-rel 5532 |
This theorem is referenced by: oprabex 7702 oprabex3 7703 mpoexw 7802 fnpm 8445 mapsnf1o2 8504 ixpsnf1o 8548 xpsnen 8650 endisj 8653 xpcomen 8657 xpassen 8660 xpmapenlem 8734 unxpdomlem3 8803 hartogslem1 9079 rankxpl 9377 rankfu 9379 rankmapu 9380 rankxplim 9381 rankxplim2 9382 rankxplim3 9383 rankxpsuc 9384 r0weon 9512 infxpenlem 9513 infxpenc2lem2 9520 dfac3 9621 dfac5lem2 9624 dfac5lem3 9625 dfac5lem4 9626 unctb 9705 axcc2lem 9936 axdc3lem 9950 axdc4lem 9955 enqex 10422 nqex 10423 nrex1 10564 enrex 10567 axcnex 10647 zexALT 12082 cnexALT 12468 addex 12470 mulex 12471 ixxex 12832 shftfval 14519 climconst2 14995 cpnnen 15674 ruclem13 15687 cnso 15692 prdsval 16831 prdsplusg 16834 prdsmulr 16835 prdsvsca 16836 prdsle 16838 prdshom 16843 prdsco 16844 fnmrc 16981 mrcfval 16982 mreacs 17032 comfffval 17072 oppccofval 17090 sectfval 17126 brssc 17189 sscpwex 17190 isssc 17195 isfunc 17239 isfuncd 17240 idfu2nd 17252 idfu1st 17254 idfucl 17256 wunfunc 17274 fuccofval 17334 homafval 17401 homaf 17402 homaval 17403 coapm 17443 catccofval 17476 catcfuccl 17485 xpcval 17543 xpcbas 17544 xpchom 17546 xpccofval 17548 1stfval 17557 2ndfval 17560 1stfcl 17563 2ndfcl 17564 catcxpccl 17573 evlf2 17584 evlf1 17586 evlfcl 17588 hof1fval 17619 hof2fval 17621 hofcl 17625 ipoval 17880 letsr 17953 frmdplusg 18135 eqgfval 18446 efglem 18960 efgval 18961 cnfldds 20227 cnfldfun 20229 cnfldfunALT 20230 xrsadd 20234 xrsmul 20235 xrsle 20237 xrsds 20260 znle 20355 pjfval 20522 psrplusg 20760 ltbval 20854 opsrle 20858 evlslem2 20893 evlssca 20903 mpfind 20921 evls1sca 21093 pf1ind 21125 mat1dimmul 21227 2ndcctbss 22206 txuni2 22316 txbas 22318 eltx 22319 txcnp 22371 txcnmpt 22375 txrest 22382 txlm 22399 tx1stc 22401 tx2ndc 22402 txkgen 22403 txflf 22757 cnextfval 22813 distgp 22850 indistgp 22851 ustfn 22953 ustn0 22972 ussid 23012 ressuss 23015 ishtpy 23724 isphtpc 23746 elovolmlem 24226 dyadmbl 24352 vitali 24365 mbfimaopnlem 24407 dvfval 24649 plyeq0lem 24959 taylfval 25106 ulmval 25127 dmarea 25695 dchrplusg 25983 tgjustc1 26421 tgjustc2 26422 iscgrg 26458 ishlg 26548 ishpg 26705 iscgra 26755 isinag 26784 isleag 26793 axlowdimlem15 26902 axlowdim 26907 isgrpoi 28433 sspval 28658 0ofval 28722 ajfval 28744 hvmulex 28946 inftmrel 31011 isinftm 31012 smatrcl 31318 tpr2rico 31434 faeval 31784 mbfmco2 31802 br2base 31806 sxbrsigalem0 31808 sxbrsigalem3 31809 dya2iocrfn 31816 dya2iocct 31817 dya2iocnrect 31818 dya2iocuni 31820 dya2iocucvr 31821 sxbrsigalem2 31823 eulerpartlemgs2 31917 ccatmulgnn0dir 32091 afsval 32221 cvmlift2lem9 32844 satfv0 32891 satf00 32907 prv1n 32964 mexval 33035 mdvval 33037 mpstval 33068 naddcllem 33472 addsov 33764 brimg 33877 brrestrict 33889 colinearex 34000 poimirlem4 35404 poimirlem28 35428 mblfinlem1 35437 heiborlem3 35594 rrnval 35608 ismrer1 35619 dfcnvrefrels2 36267 dfcnvrefrels3 36268 lcvfbr 36657 cmtfvalN 36847 cvrfval 36905 dvhvbase 38724 dvhfvadd 38728 dvhfvsca 38737 dibval 38779 dibfna 38791 dicval 38813 hdmap1fval 39433 evlsbagval 39854 mzpincl 40128 pellexlem3 40225 pellexlem4 40226 pellexlem5 40227 aomclem6 40456 trclexi 40773 rtrclexi 40774 brtrclfv2 40881 mnringmulrcld 41388 hoiprodcl2 43635 hoicvrrex 43636 ovn0lem 43645 ovnhoilem1 43681 ovnlecvr2 43690 opnvonmbllem1 43712 opnvonmbllem2 43713 ovolval2lem 43723 ovolval2 43724 ovolval3 43727 ovolval4lem2 43730 ovolval5lem2 43733 ovnovollem1 43736 ovnovollem2 43737 smflimlem6 43850 prstchomval 45812 elpglem3 45871 aacllem 45958 |
Copyright terms: Public domain | W3C validator |