Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpex | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpex.1 | ⊢ 𝐴 ∈ V |
xpex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
xpex | ⊢ (𝐴 × 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpexg 7575 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 × 𝐵) ∈ V |
Copyright terms: Public domain | W3C validator |