| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7963. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5775 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 7722 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 5336 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 5336 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 5281 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 𝒫 cpw 4566 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: xpexd 7730 3xpexg 7731 xpex 7732 sqxpexg 7734 coexg 7908 fex2 7915 fabexgOLD 7918 resfunexgALT 7929 fnexALT 7932 funexw 7933 opabex3d 7947 opabex3rd 7948 opabex3 7949 mpoexxg 8057 fnwelem 8113 naddunif 8660 pmex 8807 mapexOLD 8808 pmvalg 8813 elpmg 8819 fvdiagfn 8867 ixpexg 8898 snmapen 9012 xpdom2 9041 xpdom3 9044 omxpen 9048 fodomr 9098 disjenex 9105 domssex2 9107 domssex 9108 mapxpen 9113 xpfiOLD 9277 fczfsuppd 9344 brwdom2 9533 xpwdomg 9545 unxpwdom2 9548 djuex 9868 djuexALT 9882 fseqen 9987 djuassen 10139 mapdjuen 10141 djudom1 10143 djuinf 10149 hsmexlem2 10387 axdc2lem 10408 iundom2g 10500 fpwwe2lem12 10602 pwsbas 17457 pwsle 17462 pwssca 17466 isga 19230 efgtf 19659 frgpcpbl 19696 frgp0 19697 frgpeccl 19698 frgpadd 19700 frgpmhm 19702 vrgpf 19705 vrgpinv 19706 frgpupf 19710 frgpup1 19712 frgpup2 19713 frgpup3lem 19714 frgpnabllem1 19810 frgpnabllem2 19811 gsum2d2 19911 gsumcom2 19912 dprd2da 19981 pwssplit3 20975 mpofrlmd 21693 frlmip 21694 mattposvs 22349 mat1dimelbas 22365 mdetrlin 22496 lmfval 23126 txbasex 23460 txopn 23496 txrest 23525 txindislem 23527 xkoinjcn 23581 blfvalps 24278 bcthlem1 25231 bcthlem5 25235 rrxip 25297 isvcOLD 30515 resf1o 32660 locfinref 33838 esum2dlem 34089 esum2d 34090 elsx 34191 satfv0 35352 satf00 35368 filnetlem3 36375 filnetlem4 36376 bj-xpexg2 36955 inxpex 38328 xrninxpex 38387 aks6d1c2 42125 relexpxpnnidm 43699 enrelmap 43993 mpoexxg2 48330 eufsn2 48835 |
| Copyright terms: Public domain | W3C validator |