![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7967. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5809 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 7735 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 5376 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 5376 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 5323 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 ⊆ wss 3948 𝒫 cpw 4602 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: xpexd 7737 3xpexg 7738 xpex 7739 sqxpexg 7741 coexg 7919 fex2 7923 fabexg 7924 resfunexgALT 7933 fnexALT 7936 funexw 7937 opabex3d 7951 opabex3rd 7952 opabex3 7953 mpoexxg 8061 fnwelem 8116 naddunif 8691 pmex 8824 mapex 8825 pmvalg 8830 elpmg 8836 fvdiagfn 8884 ixpexg 8915 snmapen 9037 xpdom2 9066 xpdom3 9069 omxpen 9073 fodomr 9127 disjenex 9134 domssex2 9136 domssex 9137 mapxpen 9142 xpfiOLD 9317 fczfsuppd 9380 brwdom2 9567 xpwdomg 9579 unxpwdom2 9582 djuex 9902 djuexALT 9916 fseqen 10021 djuassen 10172 mapdjuen 10174 djudom1 10176 djuinf 10182 hsmexlem2 10421 axdc2lem 10442 iundom2g 10534 fpwwe2lem12 10636 pwsbas 17432 pwsle 17437 pwssca 17441 isga 19154 efgtf 19589 frgpcpbl 19626 frgp0 19627 frgpeccl 19628 frgpadd 19630 frgpmhm 19632 vrgpf 19635 vrgpinv 19636 frgpupf 19640 frgpup1 19642 frgpup2 19643 frgpup3lem 19644 frgpnabllem1 19740 frgpnabllem2 19741 gsum2d2 19841 gsumcom2 19842 dprd2da 19911 pwssplit3 20671 mpofrlmd 21331 frlmip 21332 mattposvs 21956 mat1dimelbas 21972 mdetrlin 22103 lmfval 22735 txbasex 23069 txopn 23105 txrest 23134 txindislem 23136 xkoinjcn 23190 blfvalps 23888 bcthlem1 24840 bcthlem5 24844 rrxip 24906 isvcOLD 29827 resf1o 31950 locfinref 32816 esum2dlem 33085 esum2d 33086 elsx 33187 satfv0 34344 satf00 34360 filnetlem3 35260 filnetlem4 35261 bj-xpexg2 35836 inxpex 37203 xrninxpex 37259 relexpxpnnidm 42444 enrelmap 42738 mpoexxg2 47003 eufsn2 47499 |
Copyright terms: Public domain | W3C validator |