Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7824. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5719 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 7599 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 5301 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 5301 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 5247 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 𝒫 cpw 4533 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: xpexd 7601 3xpexg 7602 xpex 7603 sqxpexg 7605 coexg 7776 fex2 7780 fabexg 7781 resfunexgALT 7790 fnexALT 7793 funexw 7794 opabex3d 7808 opabex3rd 7809 opabex3 7810 mpoexxg 7916 fnwelem 7972 pmex 8620 mapex 8621 pmvalg 8626 elpmg 8631 fvdiagfn 8679 ixpexg 8710 snmapen 8828 xpdom2 8854 xpdom3 8857 omxpen 8861 fodomr 8915 disjenex 8922 domssex2 8924 domssex 8925 mapxpen 8930 xpfi 9085 fczfsuppd 9146 brwdom2 9332 xpwdomg 9344 unxpwdom2 9347 djuex 9666 djuexALT 9680 fseqen 9783 djuassen 9934 mapdjuen 9936 djudom1 9938 djuinf 9944 hsmexlem2 10183 axdc2lem 10204 iundom2g 10296 fpwwe2lem12 10398 pwsbas 17198 pwsle 17203 pwssca 17207 isga 18897 efgtf 19328 frgpcpbl 19365 frgp0 19366 frgpeccl 19367 frgpadd 19369 frgpmhm 19371 vrgpf 19374 vrgpinv 19375 frgpupf 19379 frgpup1 19381 frgpup2 19382 frgpup3lem 19383 frgpnabllem1 19474 frgpnabllem2 19475 gsum2d2 19575 gsumcom2 19576 dprd2da 19645 pwssplit3 20323 mpofrlmd 20984 frlmip 20985 mattposvs 21604 mat1dimelbas 21620 mdetrlin 21751 lmfval 22383 txbasex 22717 txopn 22753 txrest 22782 txindislem 22784 xkoinjcn 22838 blfvalps 23536 bcthlem1 24488 bcthlem5 24492 rrxip 24554 isvcOLD 28941 resf1o 31065 locfinref 31791 esum2dlem 32060 esum2d 32061 elsx 32162 satfv0 33320 satf00 33336 filnetlem3 34569 filnetlem4 34570 bj-xpexg2 35150 inxpex 36474 xrninxpex 36520 relexpxpnnidm 41311 enrelmap 41605 mpoexxg2 45673 eufsn2 46170 |
Copyright terms: Public domain | W3C validator |