![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 8022. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5833 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 7778 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 5396 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 5396 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 5341 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 586 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: xpexd 7786 3xpexg 7787 xpex 7788 sqxpexg 7790 coexg 7969 fex2 7974 fabexgOLD 7977 resfunexgALT 7988 fnexALT 7991 funexw 7992 opabex3d 8006 opabex3rd 8007 opabex3 8008 mpoexxg 8116 fnwelem 8172 naddunif 8749 pmex 8889 mapexOLD 8890 pmvalg 8895 elpmg 8901 fvdiagfn 8949 ixpexg 8980 snmapen 9103 xpdom2 9133 xpdom3 9136 omxpen 9140 fodomr 9194 disjenex 9201 domssex2 9203 domssex 9204 mapxpen 9209 xpfiOLD 9387 fczfsuppd 9455 brwdom2 9642 xpwdomg 9654 unxpwdom2 9657 djuex 9977 djuexALT 9991 fseqen 10096 djuassen 10248 mapdjuen 10250 djudom1 10252 djuinf 10258 hsmexlem2 10496 axdc2lem 10517 iundom2g 10609 fpwwe2lem12 10711 pwsbas 17547 pwsle 17552 pwssca 17556 isga 19331 efgtf 19764 frgpcpbl 19801 frgp0 19802 frgpeccl 19803 frgpadd 19805 frgpmhm 19807 vrgpf 19810 vrgpinv 19811 frgpupf 19815 frgpup1 19817 frgpup2 19818 frgpup3lem 19819 frgpnabllem1 19915 frgpnabllem2 19916 gsum2d2 20016 gsumcom2 20017 dprd2da 20086 pwssplit3 21083 mpofrlmd 21820 frlmip 21821 mattposvs 22482 mat1dimelbas 22498 mdetrlin 22629 lmfval 23261 txbasex 23595 txopn 23631 txrest 23660 txindislem 23662 xkoinjcn 23716 blfvalps 24414 bcthlem1 25377 bcthlem5 25381 rrxip 25443 isvcOLD 30611 resf1o 32744 locfinref 33787 esum2dlem 34056 esum2d 34057 elsx 34158 satfv0 35326 satf00 35342 filnetlem3 36346 filnetlem4 36347 bj-xpexg2 36926 inxpex 38295 xrninxpex 38350 aks6d1c2 42087 relexpxpnnidm 43665 enrelmap 43959 mpoexxg2 48062 eufsn2 48556 |
Copyright terms: Public domain | W3C validator |