| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7980. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5788 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 7737 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 5348 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 5348 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 5293 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 𝒫 cpw 4575 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: xpexd 7745 3xpexg 7746 xpex 7747 sqxpexg 7749 coexg 7925 fex2 7932 fabexgOLD 7935 resfunexgALT 7946 fnexALT 7949 funexw 7950 opabex3d 7964 opabex3rd 7965 opabex3 7966 mpoexxg 8074 fnwelem 8130 naddunif 8705 pmex 8845 mapexOLD 8846 pmvalg 8851 elpmg 8857 fvdiagfn 8905 ixpexg 8936 snmapen 9052 xpdom2 9081 xpdom3 9084 omxpen 9088 fodomr 9142 disjenex 9149 domssex2 9151 domssex 9152 mapxpen 9157 xpfiOLD 9331 fczfsuppd 9398 brwdom2 9587 xpwdomg 9599 unxpwdom2 9602 djuex 9922 djuexALT 9936 fseqen 10041 djuassen 10193 mapdjuen 10195 djudom1 10197 djuinf 10203 hsmexlem2 10441 axdc2lem 10462 iundom2g 10554 fpwwe2lem12 10656 pwsbas 17501 pwsle 17506 pwssca 17510 isga 19274 efgtf 19703 frgpcpbl 19740 frgp0 19741 frgpeccl 19742 frgpadd 19744 frgpmhm 19746 vrgpf 19749 vrgpinv 19750 frgpupf 19754 frgpup1 19756 frgpup2 19757 frgpup3lem 19758 frgpnabllem1 19854 frgpnabllem2 19855 gsum2d2 19955 gsumcom2 19956 dprd2da 20025 pwssplit3 21019 mpofrlmd 21737 frlmip 21738 mattposvs 22393 mat1dimelbas 22409 mdetrlin 22540 lmfval 23170 txbasex 23504 txopn 23540 txrest 23569 txindislem 23571 xkoinjcn 23625 blfvalps 24322 bcthlem1 25276 bcthlem5 25280 rrxip 25342 isvcOLD 30560 resf1o 32707 locfinref 33872 esum2dlem 34123 esum2d 34124 elsx 34225 satfv0 35380 satf00 35396 filnetlem3 36398 filnetlem4 36399 bj-xpexg2 36978 inxpex 38357 xrninxpex 38412 aks6d1c2 42143 relexpxpnnidm 43727 enrelmap 44021 mpoexxg2 48313 eufsn2 48821 |
| Copyright terms: Public domain | W3C validator |