Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7797. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5708 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 7577 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 5296 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 5296 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 5242 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 586 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: xpexd 7579 3xpexg 7580 xpex 7581 sqxpexg 7583 coexg 7750 fex2 7754 fabexg 7755 resfunexgALT 7764 fnexALT 7767 funexw 7768 opabex3d 7781 opabex3rd 7782 opabex3 7783 mpoexxg 7889 fnwelem 7943 pmex 8578 mapex 8579 pmvalg 8584 elpmg 8589 fvdiagfn 8637 ixpexg 8668 snmapen 8782 xpdom2 8807 xpdom3 8810 omxpen 8814 fodomr 8864 disjenex 8871 domssex2 8873 domssex 8874 mapxpen 8879 xpfi 9015 fczfsuppd 9076 brwdom2 9262 xpwdomg 9274 unxpwdom2 9277 djuex 9597 djuexALT 9611 fseqen 9714 djuassen 9865 mapdjuen 9867 djudom1 9869 djuinf 9875 hsmexlem2 10114 axdc2lem 10135 iundom2g 10227 fpwwe2lem12 10329 pwsbas 17115 pwsle 17120 pwssca 17124 isga 18812 efgtf 19243 frgpcpbl 19280 frgp0 19281 frgpeccl 19282 frgpadd 19284 frgpmhm 19286 vrgpf 19289 vrgpinv 19290 frgpupf 19294 frgpup1 19296 frgpup2 19297 frgpup3lem 19298 frgpnabllem1 19389 frgpnabllem2 19390 gsum2d2 19490 gsumcom2 19491 dprd2da 19560 pwssplit3 20238 mpofrlmd 20894 frlmip 20895 mattposvs 21512 mat1dimelbas 21528 mdetrlin 21659 lmfval 22291 txbasex 22625 txopn 22661 txrest 22690 txindislem 22692 xkoinjcn 22746 blfvalps 23444 bcthlem1 24393 bcthlem5 24397 rrxip 24459 isvcOLD 28842 resf1o 30967 locfinref 31693 esum2dlem 31960 esum2d 31961 elsx 32062 satfv0 33220 satf00 33236 filnetlem3 34496 filnetlem4 34497 bj-xpexg2 35077 inxpex 36401 xrninxpex 36447 relexpxpnnidm 41200 enrelmap 41494 mpoexxg2 45561 eufsn2 46058 |
Copyright terms: Public domain | W3C validator |