| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7919. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5753 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 7682 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 5318 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 5318 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 5263 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 𝒫 cpw 4549 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: xpexd 7690 3xpexg 7691 xpex 7692 sqxpexg 7694 coexg 7865 fex2 7872 fabexgOLD 7875 resfunexgALT 7886 fnexALT 7889 funexw 7890 opabex3d 7903 opabex3rd 7904 opabex3 7905 mpoexxg 8013 fnwelem 8067 naddunif 8614 pmex 8761 mapexOLD 8762 pmvalg 8767 elpmg 8773 fvdiagfn 8821 ixpexg 8852 snmapen 8967 xpdom2 8992 xpdom3 8995 omxpen 8999 fodomr 9048 disjenex 9055 domssex2 9057 domssex 9058 mapxpen 9063 fczfsuppd 9277 brwdom2 9466 xpwdomg 9478 unxpwdom2 9481 djuex 9808 djuexALT 9822 fseqen 9925 djuassen 10077 mapdjuen 10079 djudom1 10081 djuinf 10087 hsmexlem2 10325 axdc2lem 10346 iundom2g 10438 fpwwe2lem12 10540 pwsbas 17393 pwsle 17398 pwssca 17402 isga 19205 efgtf 19636 frgpcpbl 19673 frgp0 19674 frgpeccl 19675 frgpadd 19677 frgpmhm 19679 vrgpf 19682 vrgpinv 19683 frgpupf 19687 frgpup1 19689 frgpup2 19690 frgpup3lem 19691 frgpnabllem1 19787 frgpnabllem2 19788 gsum2d2 19888 gsumcom2 19889 dprd2da 19958 pwssplit3 20997 mpofrlmd 21716 frlmip 21717 mattposvs 22371 mat1dimelbas 22387 mdetrlin 22518 lmfval 23148 txbasex 23482 txopn 23518 txrest 23547 txindislem 23549 xkoinjcn 23603 blfvalps 24299 bcthlem1 25252 bcthlem5 25256 rrxip 25318 isvcOLD 30561 resf1o 32717 locfinref 33875 esum2dlem 34126 esum2d 34127 elsx 34228 satfv0 35423 satf00 35439 filnetlem3 36445 filnetlem4 36446 bj-xpexg2 37025 inxpex 38391 xrninxpex 38461 aks6d1c2 42243 relexpxpnnidm 43820 enrelmap 44114 mpoexxg2 48462 eufsn2 48967 |
| Copyright terms: Public domain | W3C validator |