Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7813. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5712 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 7589 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 5299 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 5299 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 5245 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3429 ∪ cun 3884 ⊆ wss 3886 𝒫 cpw 4533 × cxp 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-opab 5136 df-xp 5590 df-rel 5591 |
This theorem is referenced by: xpexd 7591 3xpexg 7592 xpex 7593 sqxpexg 7595 coexg 7766 fex2 7770 fabexg 7771 resfunexgALT 7780 fnexALT 7783 funexw 7784 opabex3d 7797 opabex3rd 7798 opabex3 7799 mpoexxg 7905 fnwelem 7959 pmex 8607 mapex 8608 pmvalg 8613 elpmg 8618 fvdiagfn 8666 ixpexg 8697 snmapen 8815 xpdom2 8841 xpdom3 8844 omxpen 8848 fodomr 8902 disjenex 8909 domssex2 8911 domssex 8912 mapxpen 8917 xpfi 9072 fczfsuppd 9133 brwdom2 9319 xpwdomg 9331 unxpwdom2 9334 djuex 9676 djuexALT 9690 fseqen 9793 djuassen 9944 mapdjuen 9946 djudom1 9948 djuinf 9954 hsmexlem2 10193 axdc2lem 10214 iundom2g 10306 fpwwe2lem12 10408 pwsbas 17208 pwsle 17213 pwssca 17217 isga 18907 efgtf 19338 frgpcpbl 19375 frgp0 19376 frgpeccl 19377 frgpadd 19379 frgpmhm 19381 vrgpf 19384 vrgpinv 19385 frgpupf 19389 frgpup1 19391 frgpup2 19392 frgpup3lem 19393 frgpnabllem1 19484 frgpnabllem2 19485 gsum2d2 19585 gsumcom2 19586 dprd2da 19655 pwssplit3 20333 mpofrlmd 20994 frlmip 20995 mattposvs 21614 mat1dimelbas 21630 mdetrlin 21761 lmfval 22393 txbasex 22727 txopn 22763 txrest 22792 txindislem 22794 xkoinjcn 22848 blfvalps 23546 bcthlem1 24498 bcthlem5 24502 rrxip 24564 isvcOLD 28949 resf1o 31073 locfinref 31799 esum2dlem 32068 esum2d 32069 elsx 32170 satfv0 33328 satf00 33344 filnetlem3 34577 filnetlem4 34578 bj-xpexg2 35158 inxpex 36482 xrninxpex 36528 relexpxpnnidm 41292 enrelmap 41586 mpoexxg2 45651 eufsn2 46148 |
Copyright terms: Public domain | W3C validator |