| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7960. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5772 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 7719 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 5333 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 5333 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 5278 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: xpexd 7727 3xpexg 7728 xpex 7729 sqxpexg 7731 coexg 7905 fex2 7912 fabexgOLD 7915 resfunexgALT 7926 fnexALT 7929 funexw 7930 opabex3d 7944 opabex3rd 7945 opabex3 7946 mpoexxg 8054 fnwelem 8110 naddunif 8657 pmex 8804 mapexOLD 8805 pmvalg 8810 elpmg 8816 fvdiagfn 8864 ixpexg 8895 snmapen 9009 xpdom2 9036 xpdom3 9039 omxpen 9043 fodomr 9092 disjenex 9099 domssex2 9101 domssex 9102 mapxpen 9107 xpfiOLD 9270 fczfsuppd 9337 brwdom2 9526 xpwdomg 9538 unxpwdom2 9541 djuex 9861 djuexALT 9875 fseqen 9980 djuassen 10132 mapdjuen 10134 djudom1 10136 djuinf 10142 hsmexlem2 10380 axdc2lem 10401 iundom2g 10493 fpwwe2lem12 10595 pwsbas 17450 pwsle 17455 pwssca 17459 isga 19223 efgtf 19652 frgpcpbl 19689 frgp0 19690 frgpeccl 19691 frgpadd 19693 frgpmhm 19695 vrgpf 19698 vrgpinv 19699 frgpupf 19703 frgpup1 19705 frgpup2 19706 frgpup3lem 19707 frgpnabllem1 19803 frgpnabllem2 19804 gsum2d2 19904 gsumcom2 19905 dprd2da 19974 pwssplit3 20968 mpofrlmd 21686 frlmip 21687 mattposvs 22342 mat1dimelbas 22358 mdetrlin 22489 lmfval 23119 txbasex 23453 txopn 23489 txrest 23518 txindislem 23520 xkoinjcn 23574 blfvalps 24271 bcthlem1 25224 bcthlem5 25228 rrxip 25290 isvcOLD 30508 resf1o 32653 locfinref 33831 esum2dlem 34082 esum2d 34083 elsx 34184 satfv0 35345 satf00 35361 filnetlem3 36368 filnetlem4 36369 bj-xpexg2 36948 inxpex 38321 xrninxpex 38380 aks6d1c2 42118 relexpxpnnidm 43692 enrelmap 43986 mpoexxg2 48326 eufsn2 48831 |
| Copyright terms: Public domain | W3C validator |