| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7923. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5756 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 7683 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 5320 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 5320 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 5265 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 𝒫 cpw 4553 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: xpexd 7691 3xpexg 7692 xpex 7693 sqxpexg 7695 coexg 7869 fex2 7876 fabexgOLD 7879 resfunexgALT 7890 fnexALT 7893 funexw 7894 opabex3d 7907 opabex3rd 7908 opabex3 7909 mpoexxg 8017 fnwelem 8071 naddunif 8618 pmex 8765 mapexOLD 8766 pmvalg 8771 elpmg 8777 fvdiagfn 8825 ixpexg 8856 snmapen 8970 xpdom2 8996 xpdom3 8999 omxpen 9003 fodomr 9052 disjenex 9059 domssex2 9061 domssex 9062 mapxpen 9067 xpfiOLD 9228 fczfsuppd 9295 brwdom2 9484 xpwdomg 9496 unxpwdom2 9499 djuex 9823 djuexALT 9837 fseqen 9940 djuassen 10092 mapdjuen 10094 djudom1 10096 djuinf 10102 hsmexlem2 10340 axdc2lem 10361 iundom2g 10453 fpwwe2lem12 10555 pwsbas 17409 pwsle 17414 pwssca 17418 isga 19188 efgtf 19619 frgpcpbl 19656 frgp0 19657 frgpeccl 19658 frgpadd 19660 frgpmhm 19662 vrgpf 19665 vrgpinv 19666 frgpupf 19670 frgpup1 19672 frgpup2 19673 frgpup3lem 19674 frgpnabllem1 19770 frgpnabllem2 19771 gsum2d2 19871 gsumcom2 19872 dprd2da 19941 pwssplit3 20983 mpofrlmd 21702 frlmip 21703 mattposvs 22358 mat1dimelbas 22374 mdetrlin 22505 lmfval 23135 txbasex 23469 txopn 23505 txrest 23534 txindislem 23536 xkoinjcn 23590 blfvalps 24287 bcthlem1 25240 bcthlem5 25244 rrxip 25306 isvcOLD 30541 resf1o 32686 locfinref 33807 esum2dlem 34058 esum2d 34059 elsx 34160 satfv0 35330 satf00 35346 filnetlem3 36353 filnetlem4 36354 bj-xpexg2 36933 inxpex 38306 xrninxpex 38365 aks6d1c2 42103 relexpxpnnidm 43676 enrelmap 43970 mpoexxg2 48323 eufsn2 48828 |
| Copyright terms: Public domain | W3C validator |