![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version |
Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 8004. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 5821 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
2 | unexg 7761 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
3 | pwexg 5383 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
4 | pwexg 5383 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
6 | ssexg 5328 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3477 ∪ cun 3960 ⊆ wss 3962 𝒫 cpw 4604 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-opab 5210 df-xp 5694 df-rel 5695 |
This theorem is referenced by: xpexd 7769 3xpexg 7770 xpex 7771 sqxpexg 7773 coexg 7951 fex2 7956 fabexgOLD 7959 resfunexgALT 7970 fnexALT 7973 funexw 7974 opabex3d 7988 opabex3rd 7989 opabex3 7990 mpoexxg 8098 fnwelem 8154 naddunif 8729 pmex 8869 mapexOLD 8870 pmvalg 8875 elpmg 8881 fvdiagfn 8929 ixpexg 8960 snmapen 9076 xpdom2 9105 xpdom3 9108 omxpen 9112 fodomr 9166 disjenex 9173 domssex2 9175 domssex 9176 mapxpen 9181 xpfiOLD 9356 fczfsuppd 9423 brwdom2 9610 xpwdomg 9622 unxpwdom2 9625 djuex 9945 djuexALT 9959 fseqen 10064 djuassen 10216 mapdjuen 10218 djudom1 10220 djuinf 10226 hsmexlem2 10464 axdc2lem 10485 iundom2g 10577 fpwwe2lem12 10679 pwsbas 17533 pwsle 17538 pwssca 17542 isga 19321 efgtf 19754 frgpcpbl 19791 frgp0 19792 frgpeccl 19793 frgpadd 19795 frgpmhm 19797 vrgpf 19800 vrgpinv 19801 frgpupf 19805 frgpup1 19807 frgpup2 19808 frgpup3lem 19809 frgpnabllem1 19905 frgpnabllem2 19906 gsum2d2 20006 gsumcom2 20007 dprd2da 20076 pwssplit3 21077 mpofrlmd 21814 frlmip 21815 mattposvs 22476 mat1dimelbas 22492 mdetrlin 22623 lmfval 23255 txbasex 23589 txopn 23625 txrest 23654 txindislem 23656 xkoinjcn 23710 blfvalps 24408 bcthlem1 25371 bcthlem5 25375 rrxip 25437 isvcOLD 30607 resf1o 32747 locfinref 33801 esum2dlem 34072 esum2d 34073 elsx 34174 satfv0 35342 satf00 35358 filnetlem3 36362 filnetlem4 36363 bj-xpexg2 36942 inxpex 38320 xrninxpex 38375 aks6d1c2 42111 relexpxpnnidm 43692 enrelmap 43986 mpoexxg2 48182 eufsn2 48672 |
Copyright terms: Public domain | W3C validator |