| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. See also xpexgALT 7913. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 5749 | . 2 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | unexg 7676 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | pwexg 5316 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 4 | pwexg 5316 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) |
| 6 | ssexg 5261 | . 2 ⊢ (((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ V) → (𝐴 × 𝐵) ∈ V) | |
| 7 | 1, 5, 6 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ⊆ wss 3902 𝒫 cpw 4550 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: xpexd 7684 3xpexg 7685 xpex 7686 sqxpexg 7688 coexg 7859 fex2 7866 fabexgOLD 7869 resfunexgALT 7880 fnexALT 7883 funexw 7884 opabex3d 7897 opabex3rd 7898 opabex3 7899 mpoexxg 8007 fnwelem 8061 naddunif 8608 pmex 8755 mapexOLD 8756 pmvalg 8761 elpmg 8767 fvdiagfn 8815 ixpexg 8846 snmapen 8960 xpdom2 8985 xpdom3 8988 omxpen 8992 fodomr 9041 disjenex 9048 domssex2 9050 domssex 9051 mapxpen 9056 fczfsuppd 9270 brwdom2 9459 xpwdomg 9471 unxpwdom2 9474 djuex 9798 djuexALT 9812 fseqen 9915 djuassen 10067 mapdjuen 10069 djudom1 10071 djuinf 10077 hsmexlem2 10315 axdc2lem 10336 iundom2g 10428 fpwwe2lem12 10530 pwsbas 17388 pwsle 17393 pwssca 17397 isga 19201 efgtf 19632 frgpcpbl 19669 frgp0 19670 frgpeccl 19671 frgpadd 19673 frgpmhm 19675 vrgpf 19678 vrgpinv 19679 frgpupf 19683 frgpup1 19685 frgpup2 19686 frgpup3lem 19687 frgpnabllem1 19783 frgpnabllem2 19784 gsum2d2 19884 gsumcom2 19885 dprd2da 19954 pwssplit3 20993 mpofrlmd 21712 frlmip 21713 mattposvs 22368 mat1dimelbas 22384 mdetrlin 22515 lmfval 23145 txbasex 23479 txopn 23515 txrest 23544 txindislem 23546 xkoinjcn 23600 blfvalps 24296 bcthlem1 25249 bcthlem5 25253 rrxip 25315 isvcOLD 30554 resf1o 32708 locfinref 33849 esum2dlem 34100 esum2d 34101 elsx 34202 satfv0 35390 satf00 35406 filnetlem3 36413 filnetlem4 36414 bj-xpexg2 36993 inxpex 38366 xrninxpex 38425 aks6d1c2 42162 relexpxpnnidm 43735 enrelmap 44029 mpoexxg2 48368 eufsn2 48873 |
| Copyright terms: Public domain | W3C validator |