| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 19806 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | cmn32 19819 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1373 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 CMndccmn 19799 Abelcabl 19800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-sgrp 18733 df-mnd 18749 df-cmn 19801 df-abl 19802 |
| This theorem is referenced by: matunitlindflem1 37624 baerlem5alem1 41711 baerlem5blem1 41712 |
| Copyright terms: Public domain | W3C validator |