MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abl32 Structured version   Visualization version   GIF version

Theorem abl32 19716
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
abl32.g (𝜑𝐺 ∈ Abel)
abl32.x (𝜑𝑋𝐵)
abl32.y (𝜑𝑌𝐵)
abl32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
abl32 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablcmn 19700 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 17 . 2 (𝜑𝐺 ∈ CMnd)
4 abl32.x . 2 (𝜑𝑋𝐵)
5 abl32.y . 2 (𝜑𝑌𝐵)
6 abl32.z . 2 (𝜑𝑍𝐵)
7 ablcom.b . . 3 𝐵 = (Base‘𝐺)
8 ablcom.p . . 3 + = (+g𝐺)
97, 8cmn32 19713 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
103, 4, 5, 6, 9syl13anc 1374 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  CMndccmn 19693  Abelcabl 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-sgrp 18627  df-mnd 18643  df-cmn 19695  df-abl 19696
This theorem is referenced by:  matunitlindflem1  37662  baerlem5alem1  41753  baerlem5blem1  41754
  Copyright terms: Public domain W3C validator