![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version |
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablcmn 18585 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | cmn32 18597 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1440 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 CMndccmn 18579 Abelcabl 18580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 df-ov 6925 df-sgrp 17670 df-mnd 17681 df-cmn 18581 df-abl 18582 |
This theorem is referenced by: matunitlindflem1 34026 baerlem5alem1 37857 baerlem5blem1 37858 |
Copyright terms: Public domain | W3C validator |