![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version |
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablcmn 19703 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | cmn32 19716 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1371 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 CMndccmn 19696 Abelcabl 19697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-sgrp 18650 df-mnd 18666 df-cmn 19698 df-abl 19699 |
This theorem is referenced by: matunitlindflem1 36948 baerlem5alem1 41043 baerlem5blem1 41044 |
Copyright terms: Public domain | W3C validator |