MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abl32 Structured version   Visualization version   GIF version

Theorem abl32 18600
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
abl32.g (𝜑𝐺 ∈ Abel)
abl32.x (𝜑𝑋𝐵)
abl32.y (𝜑𝑌𝐵)
abl32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
abl32 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablcmn 18585 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 17 . 2 (𝜑𝐺 ∈ CMnd)
4 abl32.x . 2 (𝜑𝑋𝐵)
5 abl32.y . 2 (𝜑𝑌𝐵)
6 abl32.z . 2 (𝜑𝑍𝐵)
7 ablcom.b . . 3 𝐵 = (Base‘𝐺)
8 ablcom.p . . 3 + = (+g𝐺)
97, 8cmn32 18597 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
103, 4, 5, 6, 9syl13anc 1440 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  CMndccmn 18579  Abelcabl 18580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-nul 5025
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143  df-ov 6925  df-sgrp 17670  df-mnd 17681  df-cmn 18581  df-abl 18582
This theorem is referenced by:  matunitlindflem1  34026  baerlem5alem1  37857  baerlem5blem1  37858
  Copyright terms: Public domain W3C validator