| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 19703 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | cmn32 19716 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1374 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 CMndccmn 19696 Abelcabl 19697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-sgrp 18631 df-mnd 18647 df-cmn 19698 df-abl 19699 |
| This theorem is referenced by: matunitlindflem1 37679 baerlem5alem1 41830 baerlem5blem1 41831 |
| Copyright terms: Public domain | W3C validator |