| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 19773 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | cmn32 19786 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1374 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 CMndccmn 19766 Abelcabl 19767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-sgrp 18702 df-mnd 18718 df-cmn 19768 df-abl 19769 |
| This theorem is referenced by: matunitlindflem1 37645 baerlem5alem1 41732 baerlem5blem1 41733 |
| Copyright terms: Public domain | W3C validator |