MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abl32 Structured version   Visualization version   GIF version

Theorem abl32 19323
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
abl32.g (𝜑𝐺 ∈ Abel)
abl32.x (𝜑𝑋𝐵)
abl32.y (𝜑𝑌𝐵)
abl32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
abl32 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablcmn 19308 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 17 . 2 (𝜑𝐺 ∈ CMnd)
4 abl32.x . 2 (𝜑𝑋𝐵)
5 abl32.y . 2 (𝜑𝑌𝐵)
6 abl32.z . 2 (𝜑𝑍𝐵)
7 ablcom.b . . 3 𝐵 = (Base‘𝐺)
8 ablcom.p . . 3 + = (+g𝐺)
97, 8cmn32 19320 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
103, 4, 5, 6, 9syl13anc 1370 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  CMndccmn 19301  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-sgrp 18290  df-mnd 18301  df-cmn 19303  df-abl 19304
This theorem is referenced by:  matunitlindflem1  35700  baerlem5alem1  39649  baerlem5blem1  39650
  Copyright terms: Public domain W3C validator