Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version |
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablcmn 19308 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | cmn32 19320 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1370 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 CMndccmn 19301 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-sgrp 18290 df-mnd 18301 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: matunitlindflem1 35700 baerlem5alem1 39649 baerlem5blem1 39650 |
Copyright terms: Public domain | W3C validator |