Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abl32 | Structured version Visualization version GIF version |
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
2 | ablcmn 19393 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
9 | 7, 8 | cmn32 19405 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1371 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 CMndccmn 19386 Abelcabl 19387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-sgrp 18375 df-mnd 18386 df-cmn 19388 df-abl 19389 |
This theorem is referenced by: matunitlindflem1 35773 baerlem5alem1 39722 baerlem5blem1 39723 |
Copyright terms: Public domain | W3C validator |