Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem1 Structured version   Visualization version   GIF version

Theorem baerlem5alem1 41726
Description: Lemma for baerlem5a 41732. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
baerlem5a.a1 (𝜑𝑎𝐵)
baerlem5a.b1 (𝜑𝑏𝐵)
baerlem5a.d1 (𝜑𝑑𝐵)
baerlem5a.e1 (𝜑𝑒𝐵)
baerlem5a.j1 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
baerlem5a.j2 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
Assertion
Ref Expression
baerlem5alem1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))

Proof of Theorem baerlem5alem1
StepHypRef Expression
1 baerlem5a.j1 . . 3 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
2 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
3 baerlem3.t . . . . . 6 · = ( ·𝑠𝑊)
4 baerlem3.r . . . . . 6 𝑅 = (Scalar‘𝑊)
5 baerlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
6 baerlem3.m . . . . . 6 = (-g𝑊)
7 baerlem3.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lveclmod 21033 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
10 baerlem5a.a1 . . . . . 6 (𝜑𝑎𝐵)
11 baerlem3.x . . . . . 6 (𝜑𝑋𝑉)
12 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3912 . . . . . 6 (𝜑𝑌𝑉)
142, 3, 4, 5, 6, 9, 10, 11, 13lmodsubdi 20845 . . . . 5 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) (𝑎 · 𝑌)))
15 baerlem3.p . . . . . 6 + = (+g𝑊)
16 baerlem3.i . . . . . 6 𝐼 = (invg𝑅)
172, 4, 3, 5lmodvscl 20804 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑋𝑉) → (𝑎 · 𝑋) ∈ 𝑉)
189, 10, 11, 17syl3anc 1373 . . . . . 6 (𝜑 → (𝑎 · 𝑋) ∈ 𝑉)
192, 15, 6, 3, 4, 5, 16, 9, 10, 18, 13lmodsubvs 20844 . . . . 5 (𝜑 → ((𝑎 · 𝑋) (𝑎 · 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2014, 19eqtrd 2765 . . . 4 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2120oveq1d 7356 . . 3 (𝜑 → ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) = (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)))
224lmodring 20794 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
23 ringgrp 20149 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
249, 22, 233syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
255, 16grpinvcl 18892 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵) → (𝐼𝑎) ∈ 𝐵)
2624, 10, 25syl2anc 584 . . . . 5 (𝜑 → (𝐼𝑎) ∈ 𝐵)
272, 4, 3, 5lmodvscl 20804 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐼𝑎) ∈ 𝐵𝑌𝑉) → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
289, 26, 13, 27syl3anc 1373 . . . 4 (𝜑 → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
29 baerlem5a.b1 . . . . 5 (𝜑𝑏𝐵)
30 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3130eldifad 3912 . . . . 5 (𝜑𝑍𝑉)
322, 4, 3, 5lmodvscl 20804 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏𝐵𝑍𝑉) → (𝑏 · 𝑍) ∈ 𝑉)
339, 29, 31, 32syl3anc 1373 . . . 4 (𝜑 → (𝑏 · 𝑍) ∈ 𝑉)
342, 15lmodass 20802 . . . 4 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑋) ∈ 𝑉 ∧ ((𝐼𝑎) · 𝑌) ∈ 𝑉 ∧ (𝑏 · 𝑍) ∈ 𝑉)) → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
359, 18, 28, 33, 34syl13anc 1374 . . 3 (𝜑 → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
361, 21, 353eqtrd 2769 . 2 (𝜑𝑗 = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
372, 15lmodvacl 20801 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
389, 13, 31, 37syl3anc 1373 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
392, 4, 3, 5lmodvscl 20804 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
409, 10, 38, 39syl3anc 1373 . . . 4 (𝜑 → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
41 eqid 2730 . . . . 5 (invg𝑊) = (invg𝑊)
422, 15, 41, 6grpsubval 18890 . . . 4 (((𝑎 · 𝑋) ∈ 𝑉 ∧ (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉) → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
4318, 40, 42syl2anc 584 . . 3 (𝜑 → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
442, 3, 4, 5, 6, 9, 10, 11, 38lmodsubdi 20845 . . 3 (𝜑 → (𝑎 · (𝑋 (𝑌 + 𝑍))) = ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))))
452, 15, 4, 3, 5lmodvsdi 20811 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝑎) ∈ 𝐵𝑌𝑉𝑍𝑉)) → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
469, 26, 13, 31, 45syl13anc 1374 . . . . 5 (𝜑 → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
472, 4, 3, 41, 5, 16, 9, 38, 10lmodvsneg 20832 . . . . 5 (𝜑 → ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))) = ((𝐼𝑎) · (𝑌 + 𝑍)))
48 baerlem3.o . . . . . . . . . 10 0 = (0g𝑊)
49 baerlem3.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
50 baerlem5a.e1 . . . . . . . . . 10 (𝜑𝑒𝐵)
51 baerlem5a.d1 . . . . . . . . . . 11 (𝜑𝑑𝐵)
525, 16grpinvcl 18892 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
5324, 51, 52syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐼𝑑) ∈ 𝐵)
54 baerlem3.d . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
55 eqid 2730 . . . . . . . . . . . 12 (LSubSp‘𝑊) = (LSubSp‘𝑊)
562, 55, 49, 9, 13, 31lspprcl 20904 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
57 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
582, 15, 3, 4, 5, 49, 9, 26, 29, 13, 31lsppreli 21017 . . . . . . . . . . . 12 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
592, 15, 3, 4, 5, 49, 9, 50, 53, 13, 31lsppreli 21017 . . . . . . . . . . . 12 (𝜑 → ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
60 baerlem5a.j2 . . . . . . . . . . . . 13 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
612, 3, 4, 5, 6, 9, 51, 11, 31lmodsubdi 20845 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) (𝑑 · 𝑍)))
622, 4, 3, 5lmodvscl 20804 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑋𝑉) → (𝑑 · 𝑋) ∈ 𝑉)
639, 51, 11, 62syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 · 𝑋) ∈ 𝑉)
642, 15, 6, 3, 4, 5, 16, 9, 51, 63, 31lmodsubvs 20844 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑑 · 𝑋) (𝑑 · 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6561, 64eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6665oveq1d 7356 . . . . . . . . . . . . . 14 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)))
67 lmodabl 20835 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
687, 8, 673syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ Abel)
692, 4, 3, 5lmodvscl 20804 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑍𝑉) → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
709, 53, 31, 69syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
712, 4, 3, 5lmodvscl 20804 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑒𝐵𝑌𝑉) → (𝑒 · 𝑌) ∈ 𝑉)
729, 50, 13, 71syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝑒 · 𝑌) ∈ 𝑉)
732, 15, 68, 63, 70, 72abl32 19708 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)))
742, 15lmodass 20802 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ ((𝑑 · 𝑋) ∈ 𝑉 ∧ (𝑒 · 𝑌) ∈ 𝑉 ∧ ((𝐼𝑑) · 𝑍) ∈ 𝑉)) → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
759, 63, 72, 70, 74syl13anc 1374 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7666, 73, 753eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7760, 36, 763eqtr3d 2773 . . . . . . . . . . . 12 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
782, 15, 4, 5, 3, 55, 7, 56, 11, 57, 58, 59, 10, 51, 77lvecindp 21068 . . . . . . . . . . 11 (𝜑 → (𝑎 = 𝑑 ∧ (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7978simprd 495 . . . . . . . . . 10 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)))
802, 15, 4, 5, 3, 48, 49, 7, 12, 30, 26, 29, 50, 53, 54, 79lvecindp2 21069 . . . . . . . . 9 (𝜑 → ((𝐼𝑎) = 𝑒𝑏 = (𝐼𝑑)))
8180simprd 495 . . . . . . . 8 (𝜑𝑏 = (𝐼𝑑))
8278simpld 494 . . . . . . . . 9 (𝜑𝑎 = 𝑑)
8382fveq2d 6821 . . . . . . . 8 (𝜑 → (𝐼𝑎) = (𝐼𝑑))
8481, 83eqtr4d 2768 . . . . . . 7 (𝜑𝑏 = (𝐼𝑎))
8584oveq1d 7356 . . . . . 6 (𝜑 → (𝑏 · 𝑍) = ((𝐼𝑎) · 𝑍))
8685oveq2d 7357 . . . . 5 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
8746, 47, 863eqtr4rd 2776 . . . 4 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))))
8887oveq2d 7357 . . 3 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
8943, 44, 883eqtr4rd 2776 . 2 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = (𝑎 · (𝑋 (𝑌 + 𝑍))))
9036, 89eqtrd 2765 1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2110  wne 2926  cdif 3897  {csn 4574  {cpr 4576  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  Scalarcsca 17156   ·𝑠 cvsca 17157  0gc0g 17335  Grpcgrp 18838  invgcminusg 18839  -gcsg 18840  LSSumclsm 19539  Abelcabl 19686  Ringcrg 20144  LModclmod 20786  LSubSpclss 20857  LSpanclspn 20897  LVecclvec 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lvec 21030
This theorem is referenced by:  baerlem5alem2  41729
  Copyright terms: Public domain W3C validator