Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem1 Structured version   Visualization version   GIF version

Theorem baerlem5alem1 37776
Description: Lemma for baerlem5a 37782. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
baerlem5a.a1 (𝜑𝑎𝐵)
baerlem5a.b1 (𝜑𝑏𝐵)
baerlem5a.d1 (𝜑𝑑𝐵)
baerlem5a.e1 (𝜑𝑒𝐵)
baerlem5a.j1 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
baerlem5a.j2 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
Assertion
Ref Expression
baerlem5alem1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))

Proof of Theorem baerlem5alem1
StepHypRef Expression
1 baerlem5a.j1 . . 3 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
2 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
3 baerlem3.t . . . . . 6 · = ( ·𝑠𝑊)
4 baerlem3.r . . . . . 6 𝑅 = (Scalar‘𝑊)
5 baerlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
6 baerlem3.m . . . . . 6 = (-g𝑊)
7 baerlem3.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lveclmod 19465 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
10 baerlem5a.a1 . . . . . 6 (𝜑𝑎𝐵)
11 baerlem3.x . . . . . 6 (𝜑𝑋𝑉)
12 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3810 . . . . . 6 (𝜑𝑌𝑉)
142, 3, 4, 5, 6, 9, 10, 11, 13lmodsubdi 19276 . . . . 5 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) (𝑎 · 𝑌)))
15 baerlem3.p . . . . . 6 + = (+g𝑊)
16 baerlem3.i . . . . . 6 𝐼 = (invg𝑅)
172, 4, 3, 5lmodvscl 19236 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑋𝑉) → (𝑎 · 𝑋) ∈ 𝑉)
189, 10, 11, 17syl3anc 1494 . . . . . 6 (𝜑 → (𝑎 · 𝑋) ∈ 𝑉)
192, 15, 6, 3, 4, 5, 16, 9, 10, 18, 13lmodsubvs 19275 . . . . 5 (𝜑 → ((𝑎 · 𝑋) (𝑎 · 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2014, 19eqtrd 2861 . . . 4 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2120oveq1d 6920 . . 3 (𝜑 → ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) = (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)))
224lmodring 19227 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
23 ringgrp 18906 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
249, 22, 233syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
255, 16grpinvcl 17821 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵) → (𝐼𝑎) ∈ 𝐵)
2624, 10, 25syl2anc 579 . . . . 5 (𝜑 → (𝐼𝑎) ∈ 𝐵)
272, 4, 3, 5lmodvscl 19236 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐼𝑎) ∈ 𝐵𝑌𝑉) → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
289, 26, 13, 27syl3anc 1494 . . . 4 (𝜑 → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
29 baerlem5a.b1 . . . . 5 (𝜑𝑏𝐵)
30 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3130eldifad 3810 . . . . 5 (𝜑𝑍𝑉)
322, 4, 3, 5lmodvscl 19236 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏𝐵𝑍𝑉) → (𝑏 · 𝑍) ∈ 𝑉)
339, 29, 31, 32syl3anc 1494 . . . 4 (𝜑 → (𝑏 · 𝑍) ∈ 𝑉)
342, 15lmodass 19234 . . . 4 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑋) ∈ 𝑉 ∧ ((𝐼𝑎) · 𝑌) ∈ 𝑉 ∧ (𝑏 · 𝑍) ∈ 𝑉)) → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
359, 18, 28, 33, 34syl13anc 1495 . . 3 (𝜑 → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
361, 21, 353eqtrd 2865 . 2 (𝜑𝑗 = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
372, 15lmodvacl 19233 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
389, 13, 31, 37syl3anc 1494 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
392, 4, 3, 5lmodvscl 19236 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
409, 10, 38, 39syl3anc 1494 . . . 4 (𝜑 → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
41 eqid 2825 . . . . 5 (invg𝑊) = (invg𝑊)
422, 15, 41, 6grpsubval 17819 . . . 4 (((𝑎 · 𝑋) ∈ 𝑉 ∧ (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉) → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
4318, 40, 42syl2anc 579 . . 3 (𝜑 → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
442, 3, 4, 5, 6, 9, 10, 11, 38lmodsubdi 19276 . . 3 (𝜑 → (𝑎 · (𝑋 (𝑌 + 𝑍))) = ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))))
452, 15, 4, 3, 5lmodvsdi 19242 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝑎) ∈ 𝐵𝑌𝑉𝑍𝑉)) → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
469, 26, 13, 31, 45syl13anc 1495 . . . . 5 (𝜑 → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
472, 4, 3, 41, 5, 16, 9, 38, 10lmodvsneg 19263 . . . . 5 (𝜑 → ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))) = ((𝐼𝑎) · (𝑌 + 𝑍)))
48 baerlem3.o . . . . . . . . . 10 0 = (0g𝑊)
49 baerlem3.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
50 baerlem5a.e1 . . . . . . . . . 10 (𝜑𝑒𝐵)
51 baerlem5a.d1 . . . . . . . . . . 11 (𝜑𝑑𝐵)
525, 16grpinvcl 17821 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
5324, 51, 52syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐼𝑑) ∈ 𝐵)
54 baerlem3.d . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
55 eqid 2825 . . . . . . . . . . . 12 (LSubSp‘𝑊) = (LSubSp‘𝑊)
562, 55, 49, 9, 13, 31lspprcl 19337 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
57 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
582, 15, 3, 4, 5, 49, 9, 26, 29, 13, 31lsppreli 19449 . . . . . . . . . . . 12 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
592, 15, 3, 4, 5, 49, 9, 50, 53, 13, 31lsppreli 19449 . . . . . . . . . . . 12 (𝜑 → ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
60 baerlem5a.j2 . . . . . . . . . . . . 13 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
612, 3, 4, 5, 6, 9, 51, 11, 31lmodsubdi 19276 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) (𝑑 · 𝑍)))
622, 4, 3, 5lmodvscl 19236 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑋𝑉) → (𝑑 · 𝑋) ∈ 𝑉)
639, 51, 11, 62syl3anc 1494 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 · 𝑋) ∈ 𝑉)
642, 15, 6, 3, 4, 5, 16, 9, 51, 63, 31lmodsubvs 19275 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑑 · 𝑋) (𝑑 · 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6561, 64eqtrd 2861 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6665oveq1d 6920 . . . . . . . . . . . . . 14 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)))
67 lmodabl 19266 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
687, 8, 673syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ Abel)
692, 4, 3, 5lmodvscl 19236 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑍𝑉) → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
709, 53, 31, 69syl3anc 1494 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
712, 4, 3, 5lmodvscl 19236 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑒𝐵𝑌𝑉) → (𝑒 · 𝑌) ∈ 𝑉)
729, 50, 13, 71syl3anc 1494 . . . . . . . . . . . . . . 15 (𝜑 → (𝑒 · 𝑌) ∈ 𝑉)
732, 15, 68, 63, 70, 72abl32 18567 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)))
742, 15lmodass 19234 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ ((𝑑 · 𝑋) ∈ 𝑉 ∧ (𝑒 · 𝑌) ∈ 𝑉 ∧ ((𝐼𝑑) · 𝑍) ∈ 𝑉)) → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
759, 63, 72, 70, 74syl13anc 1495 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7666, 73, 753eqtrd 2865 . . . . . . . . . . . . 13 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7760, 36, 763eqtr3d 2869 . . . . . . . . . . . 12 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
782, 15, 4, 5, 3, 55, 7, 56, 11, 57, 58, 59, 10, 51, 77lvecindp 19498 . . . . . . . . . . 11 (𝜑 → (𝑎 = 𝑑 ∧ (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7978simprd 491 . . . . . . . . . 10 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)))
802, 15, 4, 5, 3, 48, 49, 7, 12, 30, 26, 29, 50, 53, 54, 79lvecindp2 19499 . . . . . . . . 9 (𝜑 → ((𝐼𝑎) = 𝑒𝑏 = (𝐼𝑑)))
8180simprd 491 . . . . . . . 8 (𝜑𝑏 = (𝐼𝑑))
8278simpld 490 . . . . . . . . 9 (𝜑𝑎 = 𝑑)
8382fveq2d 6437 . . . . . . . 8 (𝜑 → (𝐼𝑎) = (𝐼𝑑))
8481, 83eqtr4d 2864 . . . . . . 7 (𝜑𝑏 = (𝐼𝑎))
8584oveq1d 6920 . . . . . 6 (𝜑 → (𝑏 · 𝑍) = ((𝐼𝑎) · 𝑍))
8685oveq2d 6921 . . . . 5 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
8746, 47, 863eqtr4rd 2872 . . . 4 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))))
8887oveq2d 6921 . . 3 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
8943, 44, 883eqtr4rd 2872 . 2 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = (𝑎 · (𝑋 (𝑌 + 𝑍))))
9036, 89eqtrd 2861 1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1656  wcel 2164  wne 2999  cdif 3795  {csn 4397  {cpr 4399  cfv 6123  (class class class)co 6905  Basecbs 16222  +gcplusg 16305  Scalarcsca 16308   ·𝑠 cvsca 16309  0gc0g 16453  Grpcgrp 17776  invgcminusg 17777  -gcsg 17778  LSSumclsm 18400  Abelcabl 18547  Ringcrg 18901  LModclmod 19219  LSubSpclss 19288  LSpanclspn 19330  LVecclvec 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-cntz 18100  df-lsm 18402  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-oppr 18977  df-dvdsr 18995  df-unit 18996  df-invr 19026  df-drng 19105  df-lmod 19221  df-lss 19289  df-lsp 19331  df-lvec 19462
This theorem is referenced by:  baerlem5alem2  37779
  Copyright terms: Public domain W3C validator