Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem1 Structured version   Visualization version   GIF version

Theorem baerlem5alem1 39649
Description: Lemma for baerlem5a 39655. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
baerlem5a.a1 (𝜑𝑎𝐵)
baerlem5a.b1 (𝜑𝑏𝐵)
baerlem5a.d1 (𝜑𝑑𝐵)
baerlem5a.e1 (𝜑𝑒𝐵)
baerlem5a.j1 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
baerlem5a.j2 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
Assertion
Ref Expression
baerlem5alem1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))

Proof of Theorem baerlem5alem1
StepHypRef Expression
1 baerlem5a.j1 . . 3 (𝜑𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
2 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
3 baerlem3.t . . . . . 6 · = ( ·𝑠𝑊)
4 baerlem3.r . . . . . 6 𝑅 = (Scalar‘𝑊)
5 baerlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
6 baerlem3.m . . . . . 6 = (-g𝑊)
7 baerlem3.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
97, 8syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
10 baerlem5a.a1 . . . . . 6 (𝜑𝑎𝐵)
11 baerlem3.x . . . . . 6 (𝜑𝑋𝑉)
12 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3895 . . . . . 6 (𝜑𝑌𝑉)
142, 3, 4, 5, 6, 9, 10, 11, 13lmodsubdi 20095 . . . . 5 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) (𝑎 · 𝑌)))
15 baerlem3.p . . . . . 6 + = (+g𝑊)
16 baerlem3.i . . . . . 6 𝐼 = (invg𝑅)
172, 4, 3, 5lmodvscl 20055 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑋𝑉) → (𝑎 · 𝑋) ∈ 𝑉)
189, 10, 11, 17syl3anc 1369 . . . . . 6 (𝜑 → (𝑎 · 𝑋) ∈ 𝑉)
192, 15, 6, 3, 4, 5, 16, 9, 10, 18, 13lmodsubvs 20094 . . . . 5 (𝜑 → ((𝑎 · 𝑋) (𝑎 · 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2014, 19eqtrd 2778 . . . 4 (𝜑 → (𝑎 · (𝑋 𝑌)) = ((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)))
2120oveq1d 7270 . . 3 (𝜑 → ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) = (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)))
224lmodring 20046 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
23 ringgrp 19703 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
249, 22, 233syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
255, 16grpinvcl 18542 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵) → (𝐼𝑎) ∈ 𝐵)
2624, 10, 25syl2anc 583 . . . . 5 (𝜑 → (𝐼𝑎) ∈ 𝐵)
272, 4, 3, 5lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐼𝑎) ∈ 𝐵𝑌𝑉) → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
289, 26, 13, 27syl3anc 1369 . . . 4 (𝜑 → ((𝐼𝑎) · 𝑌) ∈ 𝑉)
29 baerlem5a.b1 . . . . 5 (𝜑𝑏𝐵)
30 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3130eldifad 3895 . . . . 5 (𝜑𝑍𝑉)
322, 4, 3, 5lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑏𝐵𝑍𝑉) → (𝑏 · 𝑍) ∈ 𝑉)
339, 29, 31, 32syl3anc 1369 . . . 4 (𝜑 → (𝑏 · 𝑍) ∈ 𝑉)
342, 15lmodass 20053 . . . 4 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑋) ∈ 𝑉 ∧ ((𝐼𝑎) · 𝑌) ∈ 𝑉 ∧ (𝑏 · 𝑍) ∈ 𝑉)) → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
359, 18, 28, 33, 34syl13anc 1370 . . 3 (𝜑 → (((𝑎 · 𝑋) + ((𝐼𝑎) · 𝑌)) + (𝑏 · 𝑍)) = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
361, 21, 353eqtrd 2782 . 2 (𝜑𝑗 = ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))))
372, 15lmodvacl 20052 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
389, 13, 31, 37syl3anc 1369 . . . . 5 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
392, 4, 3, 5lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
409, 10, 38, 39syl3anc 1369 . . . 4 (𝜑 → (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉)
41 eqid 2738 . . . . 5 (invg𝑊) = (invg𝑊)
422, 15, 41, 6grpsubval 18540 . . . 4 (((𝑎 · 𝑋) ∈ 𝑉 ∧ (𝑎 · (𝑌 + 𝑍)) ∈ 𝑉) → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
4318, 40, 42syl2anc 583 . . 3 (𝜑 → ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
442, 3, 4, 5, 6, 9, 10, 11, 38lmodsubdi 20095 . . 3 (𝜑 → (𝑎 · (𝑋 (𝑌 + 𝑍))) = ((𝑎 · 𝑋) (𝑎 · (𝑌 + 𝑍))))
452, 15, 4, 3, 5lmodvsdi 20061 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝑎) ∈ 𝐵𝑌𝑉𝑍𝑉)) → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
469, 26, 13, 31, 45syl13anc 1370 . . . . 5 (𝜑 → ((𝐼𝑎) · (𝑌 + 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
472, 4, 3, 41, 5, 16, 9, 38, 10lmodvsneg 20082 . . . . 5 (𝜑 → ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))) = ((𝐼𝑎) · (𝑌 + 𝑍)))
48 baerlem3.o . . . . . . . . . 10 0 = (0g𝑊)
49 baerlem3.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
50 baerlem5a.e1 . . . . . . . . . 10 (𝜑𝑒𝐵)
51 baerlem5a.d1 . . . . . . . . . . 11 (𝜑𝑑𝐵)
525, 16grpinvcl 18542 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
5324, 51, 52syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐼𝑑) ∈ 𝐵)
54 baerlem3.d . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
55 eqid 2738 . . . . . . . . . . . 12 (LSubSp‘𝑊) = (LSubSp‘𝑊)
562, 55, 49, 9, 13, 31lspprcl 20155 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
57 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
582, 15, 3, 4, 5, 49, 9, 26, 29, 13, 31lsppreli 20267 . . . . . . . . . . . 12 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
592, 15, 3, 4, 5, 49, 9, 50, 53, 13, 31lsppreli 20267 . . . . . . . . . . . 12 (𝜑 → ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
60 baerlem5a.j2 . . . . . . . . . . . . 13 (𝜑𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
612, 3, 4, 5, 6, 9, 51, 11, 31lmodsubdi 20095 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) (𝑑 · 𝑍)))
622, 4, 3, 5lmodvscl 20055 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑋𝑉) → (𝑑 · 𝑋) ∈ 𝑉)
639, 51, 11, 62syl3anc 1369 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑑 · 𝑋) ∈ 𝑉)
642, 15, 6, 3, 4, 5, 16, 9, 51, 63, 31lmodsubvs 20094 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑑 · 𝑋) (𝑑 · 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6561, 64eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → (𝑑 · (𝑋 𝑍)) = ((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)))
6665oveq1d 7270 . . . . . . . . . . . . . 14 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)))
67 lmodabl 20085 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
687, 8, 673syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ Abel)
692, 4, 3, 5lmodvscl 20055 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑍𝑉) → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
709, 53, 31, 69syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
712, 4, 3, 5lmodvscl 20055 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑒𝐵𝑌𝑉) → (𝑒 · 𝑌) ∈ 𝑉)
729, 50, 13, 71syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝑒 · 𝑌) ∈ 𝑉)
732, 15, 68, 63, 70, 72abl32 19323 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + ((𝐼𝑑) · 𝑍)) + (𝑒 · 𝑌)) = (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)))
742, 15lmodass 20053 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ ((𝑑 · 𝑋) ∈ 𝑉 ∧ (𝑒 · 𝑌) ∈ 𝑉 ∧ ((𝐼𝑑) · 𝑍) ∈ 𝑉)) → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
759, 63, 72, 70, 74syl13anc 1370 . . . . . . . . . . . . . 14 (𝜑 → (((𝑑 · 𝑋) + (𝑒 · 𝑌)) + ((𝐼𝑑) · 𝑍)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7666, 73, 753eqtrd 2782 . . . . . . . . . . . . 13 (𝜑 → ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7760, 36, 763eqtr3d 2786 . . . . . . . . . . . 12 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑑 · 𝑋) + ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
782, 15, 4, 5, 3, 55, 7, 56, 11, 57, 58, 59, 10, 51, 77lvecindp 20315 . . . . . . . . . . 11 (𝜑 → (𝑎 = 𝑑 ∧ (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍))))
7978simprd 495 . . . . . . . . . 10 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((𝑒 · 𝑌) + ((𝐼𝑑) · 𝑍)))
802, 15, 4, 5, 3, 48, 49, 7, 12, 30, 26, 29, 50, 53, 54, 79lvecindp2 20316 . . . . . . . . 9 (𝜑 → ((𝐼𝑎) = 𝑒𝑏 = (𝐼𝑑)))
8180simprd 495 . . . . . . . 8 (𝜑𝑏 = (𝐼𝑑))
8278simpld 494 . . . . . . . . 9 (𝜑𝑎 = 𝑑)
8382fveq2d 6760 . . . . . . . 8 (𝜑 → (𝐼𝑎) = (𝐼𝑑))
8481, 83eqtr4d 2781 . . . . . . 7 (𝜑𝑏 = (𝐼𝑎))
8584oveq1d 7270 . . . . . 6 (𝜑 → (𝑏 · 𝑍) = ((𝐼𝑎) · 𝑍))
8685oveq2d 7271 . . . . 5 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = (((𝐼𝑎) · 𝑌) + ((𝐼𝑎) · 𝑍)))
8746, 47, 863eqtr4rd 2789 . . . 4 (𝜑 → (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍)) = ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍))))
8887oveq2d 7271 . . 3 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑋) + ((invg𝑊)‘(𝑎 · (𝑌 + 𝑍)))))
8943, 44, 883eqtr4rd 2789 . 2 (𝜑 → ((𝑎 · 𝑋) + (((𝐼𝑎) · 𝑌) + (𝑏 · 𝑍))) = (𝑎 · (𝑋 (𝑌 + 𝑍))))
9036, 89eqtrd 2778 1 (𝜑𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  LSSumclsm 19154  Abelcabl 19302  Ringcrg 19698  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  baerlem5alem2  39652
  Copyright terms: Public domain W3C validator