Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5blem1 Structured version   Visualization version   GIF version

Theorem baerlem5blem1 41692
Description: Lemma for baerlem5b 41698. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
baerlem5b.a1 (𝜑𝑎𝐵)
baerlem5b.b1 (𝜑𝑏𝐵)
baerlem5b.d1 (𝜑𝑑𝐵)
baerlem5b.e1 (𝜑𝑒𝐵)
baerlem5b.j1 (𝜑𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
baerlem5b.j2 (𝜑𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))
Assertion
Ref Expression
baerlem5blem1 (𝜑𝑗 = ((𝐼𝑑) · (𝑌 + 𝑍)))

Proof of Theorem baerlem5blem1
StepHypRef Expression
1 baerlem3.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2 baerlem3.p . . . . . . . 8 + = (+g𝑊)
3 baerlem3.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
4 baerlem3.b . . . . . . . 8 𝐵 = (Base‘𝑅)
5 baerlem3.t . . . . . . . 8 · = ( ·𝑠𝑊)
6 eqid 2735 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
7 baerlem3.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
8 baerlem3.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
9 lveclmod 21123 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
107, 9syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
11 baerlem3.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3975 . . . . . . . . 9 (𝜑𝑌𝑉)
13 baerlem3.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3975 . . . . . . . . 9 (𝜑𝑍𝑉)
151, 6, 8, 10, 12, 14lspprcl 20994 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
16 baerlem3.x . . . . . . . 8 (𝜑𝑋𝑉)
17 baerlem3.c . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
18 baerlem5b.a1 . . . . . . . . 9 (𝜑𝑎𝐵)
19 baerlem5b.b1 . . . . . . . . 9 (𝜑𝑏𝐵)
201, 2, 5, 3, 4, 8, 10, 18, 19, 12, 14lsppreli 21107 . . . . . . . 8 (𝜑 → ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
213lmodring 20883 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
2210, 21syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
23 ringgrp 20256 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2422, 23syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Grp)
25 baerlem5b.d1 . . . . . . . . . 10 (𝜑𝑑𝐵)
26 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
274, 26grpinvcl 19018 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
2824, 25, 27syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐼𝑑) ∈ 𝐵)
291, 2, 5, 3, 4, 8, 10, 28, 28, 12, 14lsppreli 21107 . . . . . . . 8 (𝜑 → (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ (𝑁‘{𝑌, 𝑍}))
30 baerlem3.q . . . . . . . . . 10 𝑄 = (0g𝑅)
313, 4, 30lmod0cl 20903 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑄𝐵)
3210, 31syl 17 . . . . . . . 8 (𝜑𝑄𝐵)
33 baerlem5b.e1 . . . . . . . . 9 (𝜑𝑒𝐵)
34 baerlem3.a . . . . . . . . . 10 = (+g𝑅)
353, 4, 34lmodacl 20887 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑒𝐵) → (𝑑 𝑒) ∈ 𝐵)
3610, 25, 33, 35syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑑 𝑒) ∈ 𝐵)
371, 3, 5, 4lmodvscl 20893 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑌𝑉) → (𝑎 · 𝑌) ∈ 𝑉)
3810, 18, 12, 37syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝑎 · 𝑌) ∈ 𝑉)
391, 3, 5, 4lmodvscl 20893 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑏𝐵𝑍𝑉) → (𝑏 · 𝑍) ∈ 𝑉)
4010, 19, 14, 39syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝑏 · 𝑍) ∈ 𝑉)
411, 2lmodvacl 20890 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑎 · 𝑌) ∈ 𝑉 ∧ (𝑏 · 𝑍) ∈ 𝑉) → ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∈ 𝑉)
4210, 38, 40, 41syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∈ 𝑉)
43 baerlem3.o . . . . . . . . . . . 12 0 = (0g𝑊)
441, 2, 43lmod0vlid 20907 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∈ 𝑉) → ( 0 + ((𝑎 · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
4510, 42, 44syl2anc 584 . . . . . . . . . 10 (𝜑 → ( 0 + ((𝑎 · 𝑌) + (𝑏 · 𝑍))) = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
461, 3, 5, 30, 43lmod0vs 20910 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑄 · 𝑋) = 0 )
4710, 16, 46syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑄 · 𝑋) = 0 )
4847oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((𝑄 · 𝑋) + ((𝑎 · 𝑌) + (𝑏 · 𝑍))) = ( 0 + ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
49 baerlem5b.j1 . . . . . . . . . 10 (𝜑𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
5045, 48, 493eqtr4d 2785 . . . . . . . . 9 (𝜑 → ((𝑄 · 𝑋) + ((𝑎 · 𝑌) + (𝑏 · 𝑍))) = 𝑗)
51 baerlem3.m . . . . . . . . . . . . 13 = (-g𝑊)
521, 2lmodvacl 20890 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
5310, 12, 14, 52syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
541, 5, 3, 4, 51, 10, 25, 16, 53lmodsubdi 20934 . . . . . . . . . . . 12 (𝜑 → (𝑑 · (𝑋 (𝑌 + 𝑍))) = ((𝑑 · 𝑋) (𝑑 · (𝑌 + 𝑍))))
551, 3, 5, 4lmodvscl 20893 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑑𝐵𝑋𝑉) → (𝑑 · 𝑋) ∈ 𝑉)
5610, 25, 16, 55syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑑 · 𝑋) ∈ 𝑉)
571, 2, 51, 5, 3, 4, 26, 10, 25, 56, 53lmodsubvs 20933 . . . . . . . . . . . 12 (𝜑 → ((𝑑 · 𝑋) (𝑑 · (𝑌 + 𝑍))) = ((𝑑 · 𝑋) + ((𝐼𝑑) · (𝑌 + 𝑍))))
581, 2, 3, 5, 4lmodvsdi 20900 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝐼𝑑) ∈ 𝐵𝑌𝑉𝑍𝑉)) → ((𝐼𝑑) · (𝑌 + 𝑍)) = (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)))
5910, 28, 12, 14, 58syl13anc 1371 . . . . . . . . . . . . 13 (𝜑 → ((𝐼𝑑) · (𝑌 + 𝑍)) = (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)))
6059oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → ((𝑑 · 𝑋) + ((𝐼𝑑) · (𝑌 + 𝑍))) = ((𝑑 · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
6154, 57, 603eqtrd 2779 . . . . . . . . . . 11 (𝜑 → (𝑑 · (𝑋 (𝑌 + 𝑍))) = ((𝑑 · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
6261oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) = (((𝑑 · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) + (𝑒 · 𝑋)))
63 baerlem5b.j2 . . . . . . . . . 10 (𝜑𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))
641, 2, 3, 5, 4, 34lmodvsdir 20901 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (𝑑𝐵𝑒𝐵𝑋𝑉)) → ((𝑑 𝑒) · 𝑋) = ((𝑑 · 𝑋) + (𝑒 · 𝑋)))
6510, 25, 33, 16, 64syl13anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝑑 𝑒) · 𝑋) = ((𝑑 · 𝑋) + (𝑒 · 𝑋)))
6665oveq1d 7446 . . . . . . . . . . 11 (𝜑 → (((𝑑 𝑒) · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = (((𝑑 · 𝑋) + (𝑒 · 𝑋)) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
67 lmodabl 20924 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6810, 67syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Abel)
691, 3, 5, 4lmodvscl 20893 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑒𝐵𝑋𝑉) → (𝑒 · 𝑋) ∈ 𝑉)
7010, 33, 16, 69syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝑒 · 𝑋) ∈ 𝑉)
711, 3, 5, 4lmodvscl 20893 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑌𝑉) → ((𝐼𝑑) · 𝑌) ∈ 𝑉)
7210, 28, 12, 71syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → ((𝐼𝑑) · 𝑌) ∈ 𝑉)
731, 3, 5, 4lmodvscl 20893 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐼𝑑) ∈ 𝐵𝑍𝑉) → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
7410, 28, 14, 73syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → ((𝐼𝑑) · 𝑍) ∈ 𝑉)
751, 2lmodvacl 20890 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ((𝐼𝑑) · 𝑌) ∈ 𝑉 ∧ ((𝐼𝑑) · 𝑍) ∈ 𝑉) → (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ 𝑉)
7610, 72, 74, 75syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ 𝑉)
771, 2, 68, 56, 70, 76abl32 19836 . . . . . . . . . . 11 (𝜑 → (((𝑑 · 𝑋) + (𝑒 · 𝑋)) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = (((𝑑 · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) + (𝑒 · 𝑋)))
7866, 77eqtrd 2775 . . . . . . . . . 10 (𝜑 → (((𝑑 𝑒) · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = (((𝑑 · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) + (𝑒 · 𝑋)))
7962, 63, 783eqtr4d 2785 . . . . . . . . 9 (𝜑𝑗 = (((𝑑 𝑒) · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
8050, 79eqtrd 2775 . . . . . . . 8 (𝜑 → ((𝑄 · 𝑋) + ((𝑎 · 𝑌) + (𝑏 · 𝑍))) = (((𝑑 𝑒) · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
811, 2, 3, 4, 5, 6, 7, 15, 16, 17, 20, 29, 32, 36, 80lvecindp 21158 . . . . . . 7 (𝜑 → (𝑄 = (𝑑 𝑒) ∧ ((𝑎 · 𝑌) + (𝑏 · 𝑍)) = (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
8281simpld 494 . . . . . 6 (𝜑𝑄 = (𝑑 𝑒))
8382oveq1d 7446 . . . . 5 (𝜑 → (𝑄 · 𝑋) = ((𝑑 𝑒) · 𝑋))
8483, 47eqtr3d 2777 . . . 4 (𝜑 → ((𝑑 𝑒) · 𝑋) = 0 )
8584oveq1d 7446 . . 3 (𝜑 → (((𝑑 𝑒) · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = ( 0 + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))))
861, 2, 43lmod0vlid 20907 . . . 4 ((𝑊 ∈ LMod ∧ (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)) ∈ 𝑉) → ( 0 + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)))
8710, 76, 86syl2anc 584 . . 3 (𝜑 → ( 0 + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)))
8885, 87eqtrd 2775 . 2 (𝜑 → (((𝑑 𝑒) · 𝑋) + (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍))) = (((𝐼𝑑) · 𝑌) + ((𝐼𝑑) · 𝑍)))
8988, 79, 593eqtr4d 2785 1 (𝜑𝑗 = ((𝐼𝑑) · (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wne 2938  cdif 3960  {csn 4631  {cpr 4633  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  -gcsg 18966  LSSumclsm 19667  Abelcabl 19814  Ringcrg 20251  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120
This theorem is referenced by:  baerlem5blem2  41695
  Copyright terms: Public domain W3C validator