Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abexssex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abexssex | ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . . . 4 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑)) | |
2 | velpw 4538 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ (𝑥 ⊆ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1850 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
5 | 1, 4 | bitri 274 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
6 | 5 | abbii 2808 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} |
7 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
8 | 7 | pwex 5303 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
9 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
10 | 8, 9 | abrexex2 7812 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V |
11 | 6, 10 | eqeltrri 2836 | 1 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-pow 5288 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-iun 4926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |