MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abexssex Structured version   Visualization version   GIF version

Theorem abexssex 7949
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.)
Hypotheses
Ref Expression
abrexex2.1 𝐴 ∈ V
abrexex2.2 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexssex {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexssex
StepHypRef Expression
1 df-rex 3054 . . . 4 (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴𝜑))
2 velpw 4568 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32anbi1i 624 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝜑) ↔ (𝑥𝐴𝜑))
43exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ 𝒫 𝐴𝜑) ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitri 275 . . 3 (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
65abbii 2796 . 2 {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)}
7 abrexex2.1 . . . 4 𝐴 ∈ V
87pwex 5335 . . 3 𝒫 𝐴 ∈ V
9 abrexex2.2 . . 3 {𝑦𝜑} ∈ V
108, 9abrexex2 7948 . 2 {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V
116, 10eqeltrri 2825 1 {𝑦 ∣ ∃𝑥(𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  wss 3914  𝒫 cpw 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-pow 5320  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-pw 4565  df-uni 4872  df-iun 4957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator