| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abexssex | Structured version Visualization version GIF version | ||
| Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| abrexex2.1 | ⊢ 𝐴 ∈ V |
| abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abexssex | ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑)) | |
| 2 | velpw 4553 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 3 | 2 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ (𝑥 ⊆ 𝐴 ∧ 𝜑)) |
| 4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
| 5 | 1, 4 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
| 6 | 5 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} |
| 7 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 8 | 7 | pwex 5316 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
| 9 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 10 | 8, 9 | abrexex2 7896 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V |
| 11 | 6, 10 | eqeltrri 2826 | 1 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 ∈ wcel 2110 {cab 2708 ∃wrex 3054 Vcvv 3434 ⊆ wss 3900 𝒫 cpw 4548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-pow 5301 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3436 df-ss 3917 df-pw 4550 df-uni 4858 df-iun 4941 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |