Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abexssex | Structured version Visualization version GIF version |
Description: Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
abrexex2.1 | ⊢ 𝐴 ∈ V |
abrexex2.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abexssex | ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3072 | . . . 4 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑)) | |
2 | velpw 4548 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ (𝑥 ⊆ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝒫 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
5 | 1, 4 | bitri 274 | . . 3 ⊢ (∃𝑥 ∈ 𝒫 𝐴𝜑 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)) |
6 | 5 | abbii 2807 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} = {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} |
7 | abrexex2.1 | . . . 4 ⊢ 𝐴 ∈ V | |
8 | 7 | pwex 5316 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
9 | abrexex2.2 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
10 | 8, 9 | abrexex2 7855 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝒫 𝐴𝜑} ∈ V |
11 | 6, 10 | eqeltrri 2835 | 1 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1780 ∈ wcel 2105 {cab 2714 ∃wrex 3071 Vcvv 3441 ⊆ wss 3896 𝒫 cpw 4543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-pow 5301 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-v 3443 df-in 3903 df-ss 3913 df-pw 4545 df-uni 4849 df-iun 4937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |