MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abexex Structured version   Visualization version   GIF version

Theorem abexex 8012
Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
Hypotheses
Ref Expression
abexex.1 𝐴 ∈ V
abexex.2 (𝜑𝑥𝐴)
abexex.3 {𝑦𝜑} ∈ V
Assertion
Ref Expression
abexex {𝑦 ∣ ∃𝑥𝜑} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abexex
StepHypRef Expression
1 df-rex 3077 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 abexex.2 . . . . . 6 (𝜑𝑥𝐴)
32pm4.71ri 560 . . . . 5 (𝜑 ↔ (𝑥𝐴𝜑))
43exbii 1846 . . . 4 (∃𝑥𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
51, 4bitr4i 278 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝜑)
65abbii 2812 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
7 abexex.1 . . 3 𝐴 ∈ V
8 abexex.3 . . 3 {𝑦𝜑} ∈ V
97, 8abrexex2 8010 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V
106, 9eqeltrri 2841 1 {𝑦 ∣ ∃𝑥𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-uni 4932  df-iun 5017
This theorem is referenced by:  brdom7disj  10600  brdom6disj  10601
  Copyright terms: Public domain W3C validator