![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abexex | Structured version Visualization version GIF version |
Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
Ref | Expression |
---|---|
abexex.1 | ⊢ 𝐴 ∈ V |
abexex.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
abexex.3 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abexex | ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3067 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | abexex.2 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
3 | 2 | pm4.71ri 559 | . . . . 5 ⊢ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1842 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 1, 4 | bitr4i 277 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥𝜑) |
6 | 5 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
7 | abexex.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | abexex.3 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
9 | 7, 8 | abrexex2 7977 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
10 | 6, 9 | eqeltrri 2825 | 1 ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 {cab 2704 ∃wrex 3066 Vcvv 3471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-v 3473 df-in 3954 df-ss 3964 df-uni 4911 df-iun 5000 |
This theorem is referenced by: brdom7disj 10560 brdom6disj 10561 |
Copyright terms: Public domain | W3C validator |