![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abexex | Structured version Visualization version GIF version |
Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
Ref | Expression |
---|---|
abexex.1 | ⊢ 𝐴 ∈ V |
abexex.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
abexex.3 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
Ref | Expression |
---|---|
abexex | ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | abexex.2 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
3 | 2 | pm4.71ri 562 | . . . . 5 ⊢ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | 3 | exbii 1851 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥𝜑) |
6 | 5 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
7 | abexex.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | abexex.3 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
9 | 7, 8 | abrexex2 7903 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
10 | 6, 9 | eqeltrri 2831 | 1 ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3070 Vcvv 3444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-v 3446 df-in 3918 df-ss 3928 df-uni 4867 df-iun 4957 |
This theorem is referenced by: brdom7disj 10472 brdom6disj 10473 |
Copyright terms: Public domain | W3C validator |