| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abexex | Structured version Visualization version GIF version | ||
| Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| abexex.1 | ⊢ 𝐴 ∈ V |
| abexex.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| abexex.3 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abexex | ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3060 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | abexex.2 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 3 | 2 | pm4.71ri 560 | . . . . 5 ⊢ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | 3 | exbii 1847 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥𝜑) |
| 6 | 5 | abbii 2801 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| 7 | abexex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 8 | abexex.3 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 9 | 7, 8 | abrexex2 7976 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| 10 | 6, 9 | eqeltrri 2830 | 1 ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 {cab 2712 ∃wrex 3059 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3465 df-ss 3948 df-uni 4888 df-iun 4973 |
| This theorem is referenced by: brdom7disj 10553 brdom6disj 10554 |
| Copyright terms: Public domain | W3C validator |