| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abexex | Structured version Visualization version GIF version | ||
| Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| abexex.1 | ⊢ 𝐴 ∈ V |
| abexex.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| abexex.3 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
| Ref | Expression |
|---|---|
| abexex | ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3058 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | abexex.2 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 3 | 2 | pm4.71ri 560 | . . . . 5 ⊢ (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | 3 | exbii 1849 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥𝜑) |
| 6 | 5 | abbii 2800 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| 7 | abexex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 8 | abexex.3 | . . 3 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
| 9 | 7, 8 | abrexex2 7907 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V |
| 10 | 6, 9 | eqeltrri 2830 | 1 ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: brdom7disj 10429 brdom6disj 10430 |
| Copyright terms: Public domain | W3C validator |