| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7895 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-uni 4857 df-iun 4941 |
| This theorem is referenced by: tz9.1 9619 tz9.1c 9620 cplem2 9783 fseqdom 9917 pwsdompw 10094 cfsmolem 10161 ac6c4 10372 konigthlem 10459 alephreg 10473 pwfseqlem4 10553 pwfseqlem5 10554 pwxpndom2 10556 wunex2 10629 wuncval2 10638 inar1 10666 rtrclreclem1 14964 dfrtrclrec2 14965 rtrclreclem2 14966 rtrclreclem4 14968 isfunc 17771 smndex1bas 18814 smndex1sgrp 18816 smndex1mnd 18818 smndex1id 18819 dfac14 23533 txcmplem2 23557 cnextfval 23977 bnj893 34940 colinearex 36104 volsupnfl 37715 heiborlem3 37863 comptiunov2i 43809 corclrcl 43810 iunrelexpmin1 43811 trclrelexplem 43814 iunrelexpmin2 43815 dftrcl3 43823 trclfvcom 43826 cnvtrclfv 43827 cotrcltrcl 43828 trclimalb2 43829 trclfvdecomr 43831 dfrtrcl3 43836 dfrtrcl4 43841 corcltrcl 43842 cotrclrcl 43845 carageniuncllem1 46629 carageniuncllem2 46630 carageniuncl 46631 caratheodorylem1 46634 caratheodorylem2 46635 ovnovollem1 46764 ovnovollem2 46765 smfresal 46896 |
| Copyright terms: Public domain | W3C validator |