![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
iunex.1 | ⊢ 𝐴 ∈ V |
iunex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3066 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | iunexg 7950 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-iun 5000 |
This theorem is referenced by: tz9.1 9724 tz9.1c 9725 cplem2 9885 fseqdom 10021 pwsdompw 10199 cfsmolem 10265 ac6c4 10476 konigthlem 10563 alephreg 10577 pwfseqlem4 10657 pwfseqlem5 10658 pwxpndom2 10660 wunex2 10733 wuncval2 10742 inar1 10770 rtrclreclem1 15004 dfrtrclrec2 15005 rtrclreclem2 15006 rtrclreclem4 15008 isfunc 17814 smndex1bas 18787 smndex1sgrp 18789 smndex1mnd 18791 smndex1id 18792 dfac14 23122 txcmplem2 23146 cnextfval 23566 bnj893 33939 colinearex 35032 volsupnfl 36533 heiborlem3 36681 comptiunov2i 42457 corclrcl 42458 iunrelexpmin1 42459 trclrelexplem 42462 iunrelexpmin2 42463 dftrcl3 42471 trclfvcom 42474 cnvtrclfv 42475 cotrcltrcl 42476 trclimalb2 42477 trclfvdecomr 42479 dfrtrcl3 42484 dfrtrcl4 42489 corcltrcl 42490 cotrclrcl 42493 carageniuncllem1 45237 carageniuncllem2 45238 carageniuncl 45239 caratheodorylem1 45242 caratheodorylem2 45243 ovnovollem1 45372 ovnovollem2 45373 smfresal 45504 |
Copyright terms: Public domain | W3C validator |