![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
iunex.1 | ⊢ 𝐴 ∈ V |
iunex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | iunexg 8004 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-uni 4932 df-iun 5017 |
This theorem is referenced by: tz9.1 9798 tz9.1c 9799 cplem2 9959 fseqdom 10095 pwsdompw 10272 cfsmolem 10339 ac6c4 10550 konigthlem 10637 alephreg 10651 pwfseqlem4 10731 pwfseqlem5 10732 pwxpndom2 10734 wunex2 10807 wuncval2 10816 inar1 10844 rtrclreclem1 15106 dfrtrclrec2 15107 rtrclreclem2 15108 rtrclreclem4 15110 isfunc 17928 smndex1bas 18941 smndex1sgrp 18943 smndex1mnd 18945 smndex1id 18946 dfac14 23647 txcmplem2 23671 cnextfval 24091 bnj893 34904 colinearex 36024 volsupnfl 37625 heiborlem3 37773 comptiunov2i 43668 corclrcl 43669 iunrelexpmin1 43670 trclrelexplem 43673 iunrelexpmin2 43674 dftrcl3 43682 trclfvcom 43685 cnvtrclfv 43686 cotrcltrcl 43687 trclimalb2 43688 trclfvdecomr 43690 dfrtrcl3 43695 dfrtrcl4 43700 corcltrcl 43701 cotrclrcl 43704 carageniuncllem1 46442 carageniuncllem2 46443 carageniuncl 46444 caratheodorylem1 46447 caratheodorylem2 46448 ovnovollem1 46577 ovnovollem2 46578 smfresal 46709 |
Copyright terms: Public domain | W3C validator |