| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7942 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-uni 4872 df-iun 4957 |
| This theorem is referenced by: tz9.1 9682 tz9.1c 9683 cplem2 9843 fseqdom 9979 pwsdompw 10156 cfsmolem 10223 ac6c4 10434 konigthlem 10521 alephreg 10535 pwfseqlem4 10615 pwfseqlem5 10616 pwxpndom2 10618 wunex2 10691 wuncval2 10700 inar1 10728 rtrclreclem1 15023 dfrtrclrec2 15024 rtrclreclem2 15025 rtrclreclem4 15027 isfunc 17826 smndex1bas 18833 smndex1sgrp 18835 smndex1mnd 18837 smndex1id 18838 dfac14 23505 txcmplem2 23529 cnextfval 23949 bnj893 34918 colinearex 36048 volsupnfl 37659 heiborlem3 37807 comptiunov2i 43695 corclrcl 43696 iunrelexpmin1 43697 trclrelexplem 43700 iunrelexpmin2 43701 dftrcl3 43709 trclfvcom 43712 cnvtrclfv 43713 cotrcltrcl 43714 trclimalb2 43715 trclfvdecomr 43717 dfrtrcl3 43722 dfrtrcl4 43727 corcltrcl 43728 cotrclrcl 43731 carageniuncllem1 46519 carageniuncllem2 46520 carageniuncl 46521 caratheodorylem1 46524 caratheodorylem2 46525 ovnovollem1 46654 ovnovollem2 46655 smfresal 46786 |
| Copyright terms: Public domain | W3C validator |