| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7898 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-ss 3920 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: tz9.1 9625 tz9.1c 9626 cplem2 9786 fseqdom 9920 pwsdompw 10097 cfsmolem 10164 ac6c4 10375 konigthlem 10462 alephreg 10476 pwfseqlem4 10556 pwfseqlem5 10557 pwxpndom2 10559 wunex2 10632 wuncval2 10641 inar1 10669 rtrclreclem1 14964 dfrtrclrec2 14965 rtrclreclem2 14966 rtrclreclem4 14968 isfunc 17771 smndex1bas 18780 smndex1sgrp 18782 smndex1mnd 18784 smndex1id 18785 dfac14 23503 txcmplem2 23527 cnextfval 23947 bnj893 34901 colinearex 36044 volsupnfl 37655 heiborlem3 37803 comptiunov2i 43689 corclrcl 43690 iunrelexpmin1 43691 trclrelexplem 43694 iunrelexpmin2 43695 dftrcl3 43703 trclfvcom 43706 cnvtrclfv 43707 cotrcltrcl 43708 trclimalb2 43709 trclfvdecomr 43711 dfrtrcl3 43716 dfrtrcl4 43721 corcltrcl 43722 cotrclrcl 43725 carageniuncllem1 46512 carageniuncllem2 46513 carageniuncl 46514 caratheodorylem1 46517 caratheodorylem2 46518 ovnovollem1 46647 ovnovollem2 46648 smfresal 46779 |
| Copyright terms: Public domain | W3C validator |