| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7921 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-uni 4868 df-iun 4953 |
| This theorem is referenced by: tz9.1 9658 tz9.1c 9659 cplem2 9819 fseqdom 9955 pwsdompw 10132 cfsmolem 10199 ac6c4 10410 konigthlem 10497 alephreg 10511 pwfseqlem4 10591 pwfseqlem5 10592 pwxpndom2 10594 wunex2 10667 wuncval2 10676 inar1 10704 rtrclreclem1 14999 dfrtrclrec2 15000 rtrclreclem2 15001 rtrclreclem4 15003 isfunc 17806 smndex1bas 18815 smndex1sgrp 18817 smndex1mnd 18819 smndex1id 18820 dfac14 23538 txcmplem2 23562 cnextfval 23982 bnj893 34911 colinearex 36041 volsupnfl 37652 heiborlem3 37800 comptiunov2i 43688 corclrcl 43689 iunrelexpmin1 43690 trclrelexplem 43693 iunrelexpmin2 43694 dftrcl3 43702 trclfvcom 43705 cnvtrclfv 43706 cotrcltrcl 43707 trclimalb2 43708 trclfvdecomr 43710 dfrtrcl3 43715 dfrtrcl4 43720 corcltrcl 43721 cotrclrcl 43724 carageniuncllem1 46512 carageniuncllem2 46513 carageniuncl 46514 caratheodorylem1 46517 caratheodorylem2 46518 ovnovollem1 46647 ovnovollem2 46648 smfresal 46779 |
| Copyright terms: Public domain | W3C validator |