Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
iunex.1 | ⊢ 𝐴 ∈ V |
iunex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3076 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | iunexg 7806 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
5 | 1, 3, 4 | mp2an 689 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-iun 4926 |
This theorem is referenced by: tz9.1 9487 tz9.1c 9488 cplem2 9648 fseqdom 9782 pwsdompw 9960 cfsmolem 10026 ac6c4 10237 konigthlem 10324 alephreg 10338 pwfseqlem4 10418 pwfseqlem5 10419 pwxpndom2 10421 wunex2 10494 wuncval2 10503 inar1 10531 rtrclreclem1 14768 dfrtrclrec2 14769 rtrclreclem2 14770 rtrclreclem4 14772 isfunc 17579 smndex1bas 18545 smndex1sgrp 18547 smndex1mnd 18549 smndex1id 18550 dfac14 22769 txcmplem2 22793 cnextfval 23213 bnj893 32908 colinearex 34362 volsupnfl 35822 heiborlem3 35971 comptiunov2i 41314 corclrcl 41315 iunrelexpmin1 41316 trclrelexplem 41319 iunrelexpmin2 41320 dftrcl3 41328 trclfvcom 41331 cnvtrclfv 41332 cotrcltrcl 41333 trclimalb2 41334 trclfvdecomr 41336 dfrtrcl3 41341 dfrtrcl4 41346 corcltrcl 41347 cotrclrcl 41350 carageniuncllem1 44059 carageniuncllem2 44060 carageniuncl 44061 caratheodorylem1 44064 caratheodorylem2 44065 ovnovollem1 44194 ovnovollem2 44195 smfresal 44322 |
Copyright terms: Public domain | W3C validator |