![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
iunex.1 | ⊢ 𝐴 ∈ V |
iunex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | iunexg 7987 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-uni 4913 df-iun 4998 |
This theorem is referenced by: tz9.1 9767 tz9.1c 9768 cplem2 9928 fseqdom 10064 pwsdompw 10241 cfsmolem 10308 ac6c4 10519 konigthlem 10606 alephreg 10620 pwfseqlem4 10700 pwfseqlem5 10701 pwxpndom2 10703 wunex2 10776 wuncval2 10785 inar1 10813 rtrclreclem1 15093 dfrtrclrec2 15094 rtrclreclem2 15095 rtrclreclem4 15097 isfunc 17915 smndex1bas 18932 smndex1sgrp 18934 smndex1mnd 18936 smndex1id 18937 dfac14 23642 txcmplem2 23666 cnextfval 24086 bnj893 34921 colinearex 36042 volsupnfl 37652 heiborlem3 37800 comptiunov2i 43696 corclrcl 43697 iunrelexpmin1 43698 trclrelexplem 43701 iunrelexpmin2 43702 dftrcl3 43710 trclfvcom 43713 cnvtrclfv 43714 cotrcltrcl 43715 trclimalb2 43716 trclfvdecomr 43718 dfrtrcl3 43723 dfrtrcl4 43728 corcltrcl 43729 cotrclrcl 43732 carageniuncllem1 46477 carageniuncllem2 46478 carageniuncl 46479 caratheodorylem1 46482 caratheodorylem2 46483 ovnovollem1 46612 ovnovollem2 46613 smfresal 46744 |
Copyright terms: Public domain | W3C validator |