| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3055 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7962 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-uni 4884 df-iun 4969 |
| This theorem is referenced by: tz9.1 9743 tz9.1c 9744 cplem2 9904 fseqdom 10040 pwsdompw 10217 cfsmolem 10284 ac6c4 10495 konigthlem 10582 alephreg 10596 pwfseqlem4 10676 pwfseqlem5 10677 pwxpndom2 10679 wunex2 10752 wuncval2 10761 inar1 10789 rtrclreclem1 15076 dfrtrclrec2 15077 rtrclreclem2 15078 rtrclreclem4 15080 isfunc 17877 smndex1bas 18884 smndex1sgrp 18886 smndex1mnd 18888 smndex1id 18889 dfac14 23556 txcmplem2 23580 cnextfval 24000 bnj893 34959 colinearex 36078 volsupnfl 37689 heiborlem3 37837 comptiunov2i 43730 corclrcl 43731 iunrelexpmin1 43732 trclrelexplem 43735 iunrelexpmin2 43736 dftrcl3 43744 trclfvcom 43747 cnvtrclfv 43748 cotrcltrcl 43749 trclimalb2 43750 trclfvdecomr 43752 dfrtrcl3 43757 dfrtrcl4 43762 corcltrcl 43763 cotrclrcl 43766 carageniuncllem1 46550 carageniuncllem2 46551 carageniuncl 46552 caratheodorylem1 46555 caratheodorylem2 46556 ovnovollem1 46685 ovnovollem2 46686 smfresal 46817 |
| Copyright terms: Public domain | W3C validator |