| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3054 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7970 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ∪ ciun 4971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3465 df-ss 3948 df-uni 4888 df-iun 4973 |
| This theorem is referenced by: tz9.1 9751 tz9.1c 9752 cplem2 9912 fseqdom 10048 pwsdompw 10225 cfsmolem 10292 ac6c4 10503 konigthlem 10590 alephreg 10604 pwfseqlem4 10684 pwfseqlem5 10685 pwxpndom2 10687 wunex2 10760 wuncval2 10769 inar1 10797 rtrclreclem1 15079 dfrtrclrec2 15080 rtrclreclem2 15081 rtrclreclem4 15083 isfunc 17881 smndex1bas 18889 smndex1sgrp 18891 smndex1mnd 18893 smndex1id 18894 dfac14 23573 txcmplem2 23597 cnextfval 24017 bnj893 34917 colinearex 36036 volsupnfl 37647 heiborlem3 37795 comptiunov2i 43696 corclrcl 43697 iunrelexpmin1 43698 trclrelexplem 43701 iunrelexpmin2 43702 dftrcl3 43710 trclfvcom 43713 cnvtrclfv 43714 cotrcltrcl 43715 trclimalb2 43716 trclfvdecomr 43718 dfrtrcl3 43723 dfrtrcl4 43728 corcltrcl 43729 cotrclrcl 43732 carageniuncllem1 46508 carageniuncllem2 46509 carageniuncl 46510 caratheodorylem1 46513 caratheodorylem2 46514 ovnovollem1 46643 ovnovollem2 46644 smfresal 46775 |
| Copyright terms: Public domain | W3C validator |