| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| iunex.1 | ⊢ 𝐴 ∈ V |
| iunex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | iunexg 7945 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-uni 4875 df-iun 4960 |
| This theorem is referenced by: tz9.1 9689 tz9.1c 9690 cplem2 9850 fseqdom 9986 pwsdompw 10163 cfsmolem 10230 ac6c4 10441 konigthlem 10528 alephreg 10542 pwfseqlem4 10622 pwfseqlem5 10623 pwxpndom2 10625 wunex2 10698 wuncval2 10707 inar1 10735 rtrclreclem1 15030 dfrtrclrec2 15031 rtrclreclem2 15032 rtrclreclem4 15034 isfunc 17833 smndex1bas 18840 smndex1sgrp 18842 smndex1mnd 18844 smndex1id 18845 dfac14 23512 txcmplem2 23536 cnextfval 23956 bnj893 34925 colinearex 36055 volsupnfl 37666 heiborlem3 37814 comptiunov2i 43702 corclrcl 43703 iunrelexpmin1 43704 trclrelexplem 43707 iunrelexpmin2 43708 dftrcl3 43716 trclfvcom 43719 cnvtrclfv 43720 cotrcltrcl 43721 trclimalb2 43722 trclfvdecomr 43724 dfrtrcl3 43729 dfrtrcl4 43734 corcltrcl 43735 cotrclrcl 43738 carageniuncllem1 46526 carageniuncllem2 46527 carageniuncl 46528 caratheodorylem1 46531 caratheodorylem2 46532 ovnovollem1 46661 ovnovollem2 46662 smfresal 46793 |
| Copyright terms: Public domain | W3C validator |