![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunex | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
iunex.1 | ⊢ 𝐴 ∈ V |
iunex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | rgenw 3065 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
4 | iunexg 7946 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
5 | 1, 3, 4 | mp2an 690 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-in 3954 df-ss 3964 df-uni 4908 df-iun 4998 |
This theorem is referenced by: tz9.1 9720 tz9.1c 9721 cplem2 9881 fseqdom 10017 pwsdompw 10195 cfsmolem 10261 ac6c4 10472 konigthlem 10559 alephreg 10573 pwfseqlem4 10653 pwfseqlem5 10654 pwxpndom2 10656 wunex2 10729 wuncval2 10738 inar1 10766 rtrclreclem1 15000 dfrtrclrec2 15001 rtrclreclem2 15002 rtrclreclem4 15004 isfunc 17810 smndex1bas 18783 smndex1sgrp 18785 smndex1mnd 18787 smndex1id 18788 dfac14 23113 txcmplem2 23137 cnextfval 23557 bnj893 33927 colinearex 35020 volsupnfl 36521 heiborlem3 36669 comptiunov2i 42442 corclrcl 42443 iunrelexpmin1 42444 trclrelexplem 42447 iunrelexpmin2 42448 dftrcl3 42456 trclfvcom 42459 cnvtrclfv 42460 cotrcltrcl 42461 trclimalb2 42462 trclfvdecomr 42464 dfrtrcl3 42469 dfrtrcl4 42474 corcltrcl 42475 cotrclrcl 42478 carageniuncllem1 45223 carageniuncllem2 45224 carageniuncl 45225 caratheodorylem1 45228 caratheodorylem2 45229 ovnovollem1 45358 ovnovollem2 45359 smfresal 45490 |
Copyright terms: Public domain | W3C validator |