MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss Structured version   Visualization version   GIF version

Theorem rabss 4031
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
rabss ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rabss
StepHypRef Expression
1 df-rab 3403 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq1i 3972 . 2 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵)
3 abss 4023 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵))
4 impexp 450 . . . 4 (((𝑥𝐴𝜑) → 𝑥𝐵) ↔ (𝑥𝐴 → (𝜑𝑥𝐵)))
54albii 1819 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
6 df-ral 3045 . . 3 (∀𝑥𝐴 (𝜑𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
75, 6bitr4i 278 . 2 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
82, 3, 73bitri 297 1 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  {cab 2707  wral 3044  {crab 3402  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3403  df-ss 3928
This theorem is referenced by:  rabssdv  4034  fnsuppres  8147  wemapso2lem  9481  tskwe2  10702  grothac  10759  uzwo3  12878  fsuppmapnn0fiub0  13934  dvdsssfz1  16264  phibndlem  16716  dfphi2  16720  ramval  16955  mgmidsssn0  18575  istopon  22775  ordtrest2lem  23066  filssufilg  23774  cfinufil  23791  blsscls2  24368  nmhmcn  24996  ovolshftlem2  25387  atansssdm  26819  leftf  27753  rightf  27754  umgrres1lem  29213  upgrres1  29216  sspval  30625  ubthlem2  30773  ordtrest2NEWlem  33885  truae  34206  poimirlem30  37617  nnubfi  37717  prnc  38034  supminfrnmpt  45414  supminfxrrnmpt  45440  itgperiod  45952  fourierdlem81  46158  ovnsupge0  46528  smflimlem2  46743
  Copyright terms: Public domain W3C validator