MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss Structured version   Visualization version   GIF version

Theorem rabss 4082
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
rabss ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rabss
StepHypRef Expression
1 df-rab 3434 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq1i 4024 . 2 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵)
3 abss 4073 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵))
4 impexp 450 . . . 4 (((𝑥𝐴𝜑) → 𝑥𝐵) ↔ (𝑥𝐴 → (𝜑𝑥𝐵)))
54albii 1816 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
6 df-ral 3060 . . 3 (∀𝑥𝐴 (𝜑𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
75, 6bitr4i 278 . 2 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
82, 3, 73bitri 297 1 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2106  {cab 2712  wral 3059  {crab 3433  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rab 3434  df-ss 3980
This theorem is referenced by:  rabssdv  4085  fnsuppres  8215  wemapso2lem  9590  tskwe2  10811  grothac  10868  uzwo3  12983  fsuppmapnn0fiub0  14031  dvdsssfz1  16352  phibndlem  16804  dfphi2  16808  ramval  17042  mgmidsssn0  18698  istopon  22934  ordtrest2lem  23227  filssufilg  23935  cfinufil  23952  blsscls2  24533  nmhmcn  25167  ovolshftlem2  25559  atansssdm  26991  leftf  27919  rightf  27920  umgrres1lem  29342  upgrres1  29345  sspval  30752  ubthlem2  30900  ordtrest2NEWlem  33883  truae  34224  poimirlem30  37637  nnubfi  37737  prnc  38054  supminfrnmpt  45395  supminfxrrnmpt  45421  itgperiod  45937  fourierdlem81  46143  ovnsupge0  46513  smflimlem2  46728
  Copyright terms: Public domain W3C validator