| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabss | Structured version Visualization version GIF version | ||
| Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| rabss | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3406 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | sseq1i 3975 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵) |
| 3 | abss 4026 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵)) | |
| 4 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
| 5 | 4 | albii 1819 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) |
| 6 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3405 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-ss 3931 |
| This theorem is referenced by: rabssdv 4038 fnsuppres 8170 wemapso2lem 9505 tskwe2 10726 grothac 10783 uzwo3 12902 fsuppmapnn0fiub0 13958 dvdsssfz1 16288 phibndlem 16740 dfphi2 16744 ramval 16979 mgmidsssn0 18599 istopon 22799 ordtrest2lem 23090 filssufilg 23798 cfinufil 23815 blsscls2 24392 nmhmcn 25020 ovolshftlem2 25411 atansssdm 26843 leftf 27777 rightf 27778 umgrres1lem 29237 upgrres1 29240 sspval 30652 ubthlem2 30800 ordtrest2NEWlem 33912 truae 34233 poimirlem30 37644 nnubfi 37744 prnc 38061 supminfrnmpt 45441 supminfxrrnmpt 45467 itgperiod 45979 fourierdlem81 46185 ovnsupge0 46555 smflimlem2 46770 |
| Copyright terms: Public domain | W3C validator |