![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabss | Structured version Visualization version GIF version |
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
rabss | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3434 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | sseq1i 4011 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵) |
3 | abss 4058 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵)) | |
4 | impexp 452 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
5 | 4 | albii 1822 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) |
6 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
7 | 5, 6 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 {cab 2710 ∀wral 3062 {crab 3433 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: rabssdv 4073 fnsuppres 8176 wemapso2lem 9547 tskwe2 10768 grothac 10825 uzwo3 12927 fsuppmapnn0fiub0 13958 dvdsssfz1 16261 phibndlem 16703 dfphi2 16707 ramval 16941 mgmidsssn0 18591 istopon 22414 ordtrest2lem 22707 filssufilg 23415 cfinufil 23432 blsscls2 24013 nmhmcn 24636 ovolshftlem2 25027 atansssdm 26438 leftf 27360 rightf 27361 umgrres1lem 28567 upgrres1 28570 sspval 29976 ubthlem2 30124 ordtrest2NEWlem 32902 truae 33241 poimirlem30 36518 nnubfi 36618 prnc 36935 supminfrnmpt 44155 supminfxrrnmpt 44181 itgperiod 44697 fourierdlem81 44903 ovnsupge0 45273 smflimlem2 45488 |
Copyright terms: Public domain | W3C validator |