| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabss | Structured version Visualization version GIF version | ||
| Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| rabss | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | sseq1i 3958 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵) |
| 3 | abss 4009 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵)) | |
| 4 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
| 5 | 4 | albii 1820 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) |
| 6 | df-ral 3048 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 ∈ 𝐵))) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 {cab 2709 ∀wral 3047 {crab 3395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-ss 3914 |
| This theorem is referenced by: rabssdv 4020 fnsuppres 8121 wemapso2lem 9438 tskwe2 10664 grothac 10721 uzwo3 12841 fsuppmapnn0fiub0 13900 dvdsssfz1 16229 phibndlem 16681 dfphi2 16685 ramval 16920 mgmidsssn0 18580 istopon 22827 ordtrest2lem 23118 filssufilg 23826 cfinufil 23843 blsscls2 24419 nmhmcn 25047 ovolshftlem2 25438 atansssdm 26870 leftf 27810 rightf 27811 umgrres1lem 29288 upgrres1 29291 sspval 30703 ubthlem2 30851 ordtrest2NEWlem 33935 truae 34256 poimirlem30 37698 nnubfi 37798 prnc 38115 supminfrnmpt 45491 supminfxrrnmpt 45517 itgperiod 46027 fourierdlem81 46233 ovnsupge0 46603 smflimlem2 46818 |
| Copyright terms: Public domain | W3C validator |