MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Structured version   Visualization version   GIF version

Theorem dfacacn 10036
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn (CHOICE ↔ ∀𝑥AC 𝑥 = V)

Proof of Theorem dfacacn
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acacni 10035 . . . 4 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
21elvd 3442 . . 3 (CHOICEAC 𝑥 = V)
32alrimiv 1927 . 2 (CHOICE → ∀𝑥AC 𝑥 = V)
4 vex 3440 . . . . . . 7 𝑦 ∈ V
54difexi 5269 . . . . . 6 (𝑦 ∖ {∅}) ∈ V
6 acneq 9937 . . . . . . 7 (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅}))
76eqeq1d 2731 . . . . . 6 (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) = V))
85, 7spcv 3560 . . . . 5 (∀𝑥AC 𝑥 = V → AC (𝑦 ∖ {∅}) = V)
9 vuniex 7675 . . . . . . 7 𝑦 ∈ V
10 id 22 . . . . . . 7 (AC (𝑦 ∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V)
119, 10eleqtrrid 2835 . . . . . 6 (AC (𝑦 ∖ {∅}) = V → 𝑦AC (𝑦 ∖ {∅}))
12 eldifi 4082 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧𝑦)
13 elssuni 4888 . . . . . . . . 9 (𝑧𝑦𝑧 𝑦)
1412, 13syl 17 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 𝑦)
15 eldifsni 4741 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅)
1614, 15jca 511 . . . . . . 7 (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 𝑦𝑧 ≠ ∅))
1716rgen 3046 . . . . . 6 𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)
18 acni2 9940 . . . . . 6 (( 𝑦AC (𝑦 ∖ {∅}) ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)) → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
1911, 17, 18sylancl 586 . . . . 5 (AC (𝑦 ∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
204mptex 7159 . . . . . . 7 (𝑥𝑦 ↦ (𝑔𝑥)) ∈ V
21 simpr 484 . . . . . . . . 9 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧)
22 eldifsn 4737 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧𝑦𝑧 ≠ ∅))
2322imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
24 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
25 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↦ (𝑔𝑥)) = (𝑥𝑦 ↦ (𝑔𝑥))
26 fvex 6835 . . . . . . . . . . . . . . 15 (𝑔𝑧) ∈ V
2724, 25, 26fvmpt 6930 . . . . . . . . . . . . . 14 (𝑧𝑦 → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2812, 27syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2928eleq1d 2813 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔𝑧) ∈ 𝑧))
3029pm5.74i 271 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧))
31 impexp 450 . . . . . . . . . . 11 (((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3223, 30, 313bitr3i 301 . . . . . . . . . 10 ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3332ralbii2 3071 . . . . . . . . 9 (∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
3421, 33sylib 218 . . . . . . . 8 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
35 fvrn0 6850 . . . . . . . . . . 11 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3635rgenw 3048 . . . . . . . . . 10 𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3725fmpt 7044 . . . . . . . . . 10 (∀𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}))
3836, 37mpbi 230 . . . . . . . . 9 (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})
39 ffn 6652 . . . . . . . . 9 ((𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦)
4038, 39ax-mp 5 . . . . . . . 8 (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦
4134, 40jctil 519 . . . . . . 7 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
42 fneq1 6573 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦))
43 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓𝑧) = ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧))
4443eleq1d 2813 . . . . . . . . . . 11 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
4544imbi2d 340 . . . . . . . . . 10 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4645ralbidv 3152 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4742, 46anbi12d 632 . . . . . . . 8 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))))
4847spcegv 3552 . . . . . . 7 ((𝑥𝑦 ↦ (𝑔𝑥)) ∈ V → (((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
4920, 41, 48mpsyl 68 . . . . . 6 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5049exlimiv 1930 . . . . 5 (∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
518, 19, 503syl 18 . . . 4 (∀𝑥AC 𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5251alrimiv 1927 . . 3 (∀𝑥AC 𝑥 = V → ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
53 dfac4 10016 . . 3 (CHOICE ↔ ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5452, 53sylibr 234 . 2 (∀𝑥AC 𝑥 = V → CHOICE)
553, 54impbii 209 1 (CHOICE ↔ ∀𝑥AC 𝑥 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284  {csn 4577   cuni 4858  cmpt 5173  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  AC wacn 9834  CHOICEwac 10009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-card 9835  df-acn 9838  df-ac 10010
This theorem is referenced by:  dfac13  10037
  Copyright terms: Public domain W3C validator