MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Structured version   Visualization version   GIF version

Theorem dfacacn 10095
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn (CHOICE ↔ ∀𝑥AC 𝑥 = V)

Proof of Theorem dfacacn
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acacni 10094 . . . 4 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
21elvd 3453 . . 3 (CHOICEAC 𝑥 = V)
32alrimiv 1927 . 2 (CHOICE → ∀𝑥AC 𝑥 = V)
4 vex 3451 . . . . . . 7 𝑦 ∈ V
54difexi 5285 . . . . . 6 (𝑦 ∖ {∅}) ∈ V
6 acneq 9996 . . . . . . 7 (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅}))
76eqeq1d 2731 . . . . . 6 (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) = V))
85, 7spcv 3571 . . . . 5 (∀𝑥AC 𝑥 = V → AC (𝑦 ∖ {∅}) = V)
9 vuniex 7715 . . . . . . 7 𝑦 ∈ V
10 id 22 . . . . . . 7 (AC (𝑦 ∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V)
119, 10eleqtrrid 2835 . . . . . 6 (AC (𝑦 ∖ {∅}) = V → 𝑦AC (𝑦 ∖ {∅}))
12 eldifi 4094 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧𝑦)
13 elssuni 4901 . . . . . . . . 9 (𝑧𝑦𝑧 𝑦)
1412, 13syl 17 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 𝑦)
15 eldifsni 4754 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅)
1614, 15jca 511 . . . . . . 7 (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 𝑦𝑧 ≠ ∅))
1716rgen 3046 . . . . . 6 𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)
18 acni2 9999 . . . . . 6 (( 𝑦AC (𝑦 ∖ {∅}) ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)) → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
1911, 17, 18sylancl 586 . . . . 5 (AC (𝑦 ∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
204mptex 7197 . . . . . . 7 (𝑥𝑦 ↦ (𝑔𝑥)) ∈ V
21 simpr 484 . . . . . . . . 9 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧)
22 eldifsn 4750 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧𝑦𝑧 ≠ ∅))
2322imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
24 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
25 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↦ (𝑔𝑥)) = (𝑥𝑦 ↦ (𝑔𝑥))
26 fvex 6871 . . . . . . . . . . . . . . 15 (𝑔𝑧) ∈ V
2724, 25, 26fvmpt 6968 . . . . . . . . . . . . . 14 (𝑧𝑦 → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2812, 27syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2928eleq1d 2813 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔𝑧) ∈ 𝑧))
3029pm5.74i 271 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧))
31 impexp 450 . . . . . . . . . . 11 (((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3223, 30, 313bitr3i 301 . . . . . . . . . 10 ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3332ralbii2 3071 . . . . . . . . 9 (∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
3421, 33sylib 218 . . . . . . . 8 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
35 fvrn0 6888 . . . . . . . . . . 11 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3635rgenw 3048 . . . . . . . . . 10 𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3725fmpt 7082 . . . . . . . . . 10 (∀𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}))
3836, 37mpbi 230 . . . . . . . . 9 (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})
39 ffn 6688 . . . . . . . . 9 ((𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦)
4038, 39ax-mp 5 . . . . . . . 8 (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦
4134, 40jctil 519 . . . . . . 7 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
42 fneq1 6609 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦))
43 fveq1 6857 . . . . . . . . . . . 12 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓𝑧) = ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧))
4443eleq1d 2813 . . . . . . . . . . 11 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
4544imbi2d 340 . . . . . . . . . 10 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4645ralbidv 3156 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4742, 46anbi12d 632 . . . . . . . 8 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))))
4847spcegv 3563 . . . . . . 7 ((𝑥𝑦 ↦ (𝑔𝑥)) ∈ V → (((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
4920, 41, 48mpsyl 68 . . . . . 6 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5049exlimiv 1930 . . . . 5 (∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
518, 19, 503syl 18 . . . 4 (∀𝑥AC 𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5251alrimiv 1927 . . 3 (∀𝑥AC 𝑥 = V → ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
53 dfac4 10075 . . 3 (CHOICE ↔ ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5452, 53sylibr 234 . 2 (∀𝑥AC 𝑥 = V → CHOICE)
553, 54impbii 209 1 (CHOICE ↔ ∀𝑥AC 𝑥 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589   cuni 4871  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  AC wacn 9891  CHOICEwac 10068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-card 9892  df-acn 9895  df-ac 10069
This theorem is referenced by:  dfac13  10096
  Copyright terms: Public domain W3C validator