MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Structured version   Visualization version   GIF version

Theorem dfacacn 10033
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn (CHOICE ↔ ∀𝑥AC 𝑥 = V)

Proof of Theorem dfacacn
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acacni 10032 . . . 4 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
21elvd 3442 . . 3 (CHOICEAC 𝑥 = V)
32alrimiv 1928 . 2 (CHOICE → ∀𝑥AC 𝑥 = V)
4 vex 3440 . . . . . . 7 𝑦 ∈ V
54difexi 5266 . . . . . 6 (𝑦 ∖ {∅}) ∈ V
6 acneq 9934 . . . . . . 7 (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅}))
76eqeq1d 2733 . . . . . 6 (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) = V))
85, 7spcv 3555 . . . . 5 (∀𝑥AC 𝑥 = V → AC (𝑦 ∖ {∅}) = V)
9 vuniex 7672 . . . . . . 7 𝑦 ∈ V
10 id 22 . . . . . . 7 (AC (𝑦 ∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V)
119, 10eleqtrrid 2838 . . . . . 6 (AC (𝑦 ∖ {∅}) = V → 𝑦AC (𝑦 ∖ {∅}))
12 eldifi 4078 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧𝑦)
13 elssuni 4887 . . . . . . . . 9 (𝑧𝑦𝑧 𝑦)
1412, 13syl 17 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 𝑦)
15 eldifsni 4739 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅)
1614, 15jca 511 . . . . . . 7 (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 𝑦𝑧 ≠ ∅))
1716rgen 3049 . . . . . 6 𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)
18 acni2 9937 . . . . . 6 (( 𝑦AC (𝑦 ∖ {∅}) ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)) → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
1911, 17, 18sylancl 586 . . . . 5 (AC (𝑦 ∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
204mptex 7157 . . . . . . 7 (𝑥𝑦 ↦ (𝑔𝑥)) ∈ V
21 simpr 484 . . . . . . . . 9 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧)
22 eldifsn 4735 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧𝑦𝑧 ≠ ∅))
2322imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
24 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
25 eqid 2731 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↦ (𝑔𝑥)) = (𝑥𝑦 ↦ (𝑔𝑥))
26 fvex 6835 . . . . . . . . . . . . . . 15 (𝑔𝑧) ∈ V
2724, 25, 26fvmpt 6929 . . . . . . . . . . . . . 14 (𝑧𝑦 → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2812, 27syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2928eleq1d 2816 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔𝑧) ∈ 𝑧))
3029pm5.74i 271 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧))
31 impexp 450 . . . . . . . . . . 11 (((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3223, 30, 313bitr3i 301 . . . . . . . . . 10 ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3332ralbii2 3074 . . . . . . . . 9 (∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
3421, 33sylib 218 . . . . . . . 8 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
35 fvrn0 6850 . . . . . . . . . . 11 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3635rgenw 3051 . . . . . . . . . 10 𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3725fmpt 7043 . . . . . . . . . 10 (∀𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}))
3836, 37mpbi 230 . . . . . . . . 9 (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})
39 ffn 6651 . . . . . . . . 9 ((𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦)
4038, 39ax-mp 5 . . . . . . . 8 (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦
4134, 40jctil 519 . . . . . . 7 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
42 fneq1 6572 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦))
43 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓𝑧) = ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧))
4443eleq1d 2816 . . . . . . . . . . 11 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
4544imbi2d 340 . . . . . . . . . 10 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4645ralbidv 3155 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4742, 46anbi12d 632 . . . . . . . 8 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))))
4847spcegv 3547 . . . . . . 7 ((𝑥𝑦 ↦ (𝑔𝑥)) ∈ V → (((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
4920, 41, 48mpsyl 68 . . . . . 6 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5049exlimiv 1931 . . . . 5 (∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
518, 19, 503syl 18 . . . 4 (∀𝑥AC 𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5251alrimiv 1928 . . 3 (∀𝑥AC 𝑥 = V → ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
53 dfac4 10013 . . 3 (CHOICE ↔ ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5452, 53sylibr 234 . 2 (∀𝑥AC 𝑥 = V → CHOICE)
553, 54impbii 209 1 (CHOICE ↔ ∀𝑥AC 𝑥 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4280  {csn 4573   cuni 4856  cmpt 5170  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  AC wacn 9831  CHOICEwac 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-card 9832  df-acn 9835  df-ac 10007
This theorem is referenced by:  dfac13  10034
  Copyright terms: Public domain W3C validator