MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfacacn Structured version   Visualization version   GIF version

Theorem dfacacn 9248
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfacacn (CHOICE ↔ ∀𝑥AC 𝑥 = V)

Proof of Theorem dfacacn
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acacni 9247 . . . 4 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
21elvd 3396 . . 3 (CHOICEAC 𝑥 = V)
32alrimiv 2018 . 2 (CHOICE → ∀𝑥AC 𝑥 = V)
4 vex 3394 . . . . . . 7 𝑦 ∈ V
5 difexg 5003 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∖ {∅}) ∈ V)
64, 5ax-mp 5 . . . . . 6 (𝑦 ∖ {∅}) ∈ V
7 acneq 9149 . . . . . . 7 (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅}))
87eqeq1d 2808 . . . . . 6 (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) = V))
96, 8spcv 3492 . . . . 5 (∀𝑥AC 𝑥 = V → AC (𝑦 ∖ {∅}) = V)
10 vuniex 7184 . . . . . . 7 𝑦 ∈ V
11 id 22 . . . . . . 7 (AC (𝑦 ∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V)
1210, 11syl5eleqr 2892 . . . . . 6 (AC (𝑦 ∖ {∅}) = V → 𝑦AC (𝑦 ∖ {∅}))
13 eldifi 3931 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧𝑦)
14 elssuni 4661 . . . . . . . . 9 (𝑧𝑦𝑧 𝑦)
1513, 14syl 17 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 𝑦)
16 eldifsni 4512 . . . . . . . 8 (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅)
1715, 16jca 503 . . . . . . 7 (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 𝑦𝑧 ≠ ∅))
1817rgen 3110 . . . . . 6 𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)
19 acni2 9152 . . . . . 6 (( 𝑦AC (𝑦 ∖ {∅}) ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑧 𝑦𝑧 ≠ ∅)) → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
2012, 18, 19sylancl 576 . . . . 5 (AC (𝑦 ∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧))
214mptex 6711 . . . . . . 7 (𝑥𝑦 ↦ (𝑔𝑥)) ∈ V
22 simpr 473 . . . . . . . . 9 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧)
23 eldifsn 4508 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧𝑦𝑧 ≠ ∅))
2423imbi1i 340 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
25 fveq2 6408 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
26 eqid 2806 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↦ (𝑔𝑥)) = (𝑥𝑦 ↦ (𝑔𝑥))
27 fvex 6421 . . . . . . . . . . . . . . 15 (𝑔𝑧) ∈ V
2825, 26, 27fvmpt 6503 . . . . . . . . . . . . . 14 (𝑧𝑦 → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
2913, 28syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) = (𝑔𝑧))
3029eleq1d 2870 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔𝑧) ∈ 𝑧))
3130pm5.74i 262 . . . . . . . . . . 11 ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧))
32 impexp 439 . . . . . . . . . . 11 (((𝑧𝑦𝑧 ≠ ∅) → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3324, 31, 323bitr3i 292 . . . . . . . . . 10 ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔𝑧) ∈ 𝑧) ↔ (𝑧𝑦 → (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
3433ralbii2 3166 . . . . . . . . 9 (∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧 ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
3522, 34sylib 209 . . . . . . . 8 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
36 fvrn0 6436 . . . . . . . . . . 11 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3736rgenw 3112 . . . . . . . . . 10 𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅})
3826fmpt 6602 . . . . . . . . . 10 (∀𝑥𝑦 (𝑔𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}))
3937, 38mpbi 221 . . . . . . . . 9 (𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})
40 ffn 6256 . . . . . . . . 9 ((𝑥𝑦 ↦ (𝑔𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦)
4139, 40ax-mp 5 . . . . . . . 8 (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦
4235, 41jctil 511 . . . . . . 7 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
43 fneq1 6190 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦))
44 fveq1 6407 . . . . . . . . . . . 12 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (𝑓𝑧) = ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧))
4544eleq1d 2870 . . . . . . . . . . 11 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))
4645imbi2d 331 . . . . . . . . . 10 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4746ralbidv 3174 . . . . . . . . 9 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)))
4843, 47anbi12d 618 . . . . . . . 8 (𝑓 = (𝑥𝑦 ↦ (𝑔𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧))))
4948spcegv 3487 . . . . . . 7 ((𝑥𝑦 ↦ (𝑔𝑥)) ∈ V → (((𝑥𝑦 ↦ (𝑔𝑥)) Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → ((𝑥𝑦 ↦ (𝑔𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))))
5021, 42, 49mpsyl 68 . . . . . 6 ((𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5150exlimiv 2021 . . . . 5 (∃𝑔(𝑔:(𝑦 ∖ {∅})⟶ 𝑦 ∧ ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
529, 20, 513syl 18 . . . 4 (∀𝑥AC 𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5352alrimiv 2018 . . 3 (∀𝑥AC 𝑥 = V → ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54 dfac4 9228 . . 3 (CHOICE ↔ ∀𝑦𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
5553, 54sylibr 225 . 2 (∀𝑥AC 𝑥 = V → CHOICE)
563, 55impbii 200 1 (CHOICE ↔ ∀𝑥AC 𝑥 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wex 1859  wcel 2156  wne 2978  wral 3096  Vcvv 3391  cdif 3766  cun 3767  wss 3769  c0 4116  {csn 4370   cuni 4630  cmpt 4923  ran crn 5312   Fn wfn 6096  wf 6097  cfv 6101  AC wacn 9047  CHOICEwac 9221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-er 7979  df-map 8094  df-en 8193  df-dom 8194  df-card 9048  df-acn 9051  df-ac 9222
This theorem is referenced by:  dfac13  9249
  Copyright terms: Public domain W3C validator