| Step | Hyp | Ref
| Expression |
| 1 | | acacni 10181 |
. . . 4
⊢
((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) |
| 2 | 1 | elvd 3486 |
. . 3
⊢
(CHOICE → AC 𝑥 = V) |
| 3 | 2 | alrimiv 1927 |
. 2
⊢
(CHOICE → ∀𝑥AC 𝑥 = V) |
| 4 | | vex 3484 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 5 | 4 | difexi 5330 |
. . . . . 6
⊢ (𝑦 ∖ {∅}) ∈
V |
| 6 | | acneq 10083 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅})) |
| 7 | 6 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) =
V)) |
| 8 | 5, 7 | spcv 3605 |
. . . . 5
⊢
(∀𝑥AC
𝑥 = V → AC
(𝑦 ∖ {∅}) =
V) |
| 9 | | vuniex 7759 |
. . . . . . 7
⊢ ∪ 𝑦
∈ V |
| 10 | | id 22 |
. . . . . . 7
⊢
(AC (𝑦
∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V) |
| 11 | 9, 10 | eleqtrrid 2848 |
. . . . . 6
⊢
(AC (𝑦
∖ {∅}) = V → ∪ 𝑦 ∈ AC (𝑦 ∖ {∅})) |
| 12 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ∈ 𝑦) |
| 13 | | elssuni 4937 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦) |
| 14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ⊆ ∪ 𝑦) |
| 15 | | eldifsni 4790 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅) |
| 16 | 14, 15 | jca 511 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 ⊆ ∪ 𝑦
∧ 𝑧 ≠
∅)) |
| 17 | 16 | rgen 3063 |
. . . . . 6
⊢
∀𝑧 ∈
(𝑦 ∖ {∅})(𝑧 ⊆ ∪ 𝑦
∧ 𝑧 ≠
∅) |
| 18 | | acni2 10086 |
. . . . . 6
⊢ ((∪ 𝑦
∈ AC (𝑦 ∖
{∅}) ∧ ∀𝑧
∈ (𝑦 ∖
{∅})(𝑧 ⊆ ∪ 𝑦
∧ 𝑧 ≠ ∅))
→ ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧)) |
| 19 | 11, 17, 18 | sylancl 586 |
. . . . 5
⊢
(AC (𝑦
∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧)) |
| 20 | 4 | mptex 7243 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) ∈ V |
| 21 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) |
| 22 | | eldifsn 4786 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅)) |
| 23 | 22 | imbi1i 349 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
| 24 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑔‘𝑥) = (𝑔‘𝑧)) |
| 25 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) |
| 26 | | fvex 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝑔‘𝑧) ∈ V |
| 27 | 24, 25, 26 | fvmpt 7016 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) = (𝑔‘𝑧)) |
| 28 | 12, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) = (𝑔‘𝑧)) |
| 29 | 28 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔‘𝑧) ∈ 𝑧)) |
| 30 | 29 | pm5.74i 271 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔‘𝑧) ∈ 𝑧)) |
| 31 | | impexp 450 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ 𝑦 → (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
| 32 | 23, 30, 31 | 3bitr3i 301 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ 𝑦 → (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
| 33 | 32 | ralbii2 3089 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
| 34 | 21, 33 | sylib 218 |
. . . . . . . 8
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
| 35 | | fvrn0 6936 |
. . . . . . . . . . 11
⊢ (𝑔‘𝑥) ∈ (ran 𝑔 ∪ {∅}) |
| 36 | 35 | rgenw 3065 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝑦 (𝑔‘𝑥) ∈ (ran 𝑔 ∪ {∅}) |
| 37 | 25 | fmpt 7130 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑦 (𝑔‘𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})) |
| 38 | 36, 37 | mpbi 230 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) |
| 39 | | ffn 6736 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦) |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 |
| 41 | 34, 40 | jctil 519 |
. . . . . . 7
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
| 42 | | fneq1 6659 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦)) |
| 43 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → (𝑓‘𝑧) = ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧)) |
| 44 | 43 | eleq1d 2826 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
| 45 | 44 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
| 46 | 45 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
| 47 | 42, 46 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) ↔ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)))) |
| 48 | 47 | spcegv 3597 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) ∈ V → (((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)))) |
| 49 | 20, 41, 48 | mpsyl 68 |
. . . . . 6
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 50 | 49 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑔(𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 51 | 8, 19, 50 | 3syl 18 |
. . . 4
⊢
(∀𝑥AC
𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 52 | 51 | alrimiv 1927 |
. . 3
⊢
(∀𝑥AC
𝑥 = V → ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 53 | | dfac4 10162 |
. . 3
⊢
(CHOICE ↔ ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 54 | 52, 53 | sylibr 234 |
. 2
⊢
(∀𝑥AC
𝑥 = V →
CHOICE) |
| 55 | 3, 54 | impbii 209 |
1
⊢
(CHOICE ↔ ∀𝑥AC 𝑥 = V) |