Step | Hyp | Ref
| Expression |
1 | | acacni 9896 |
. . . 4
⊢
((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) |
2 | 1 | elvd 3439 |
. . 3
⊢
(CHOICE → AC 𝑥 = V) |
3 | 2 | alrimiv 1930 |
. 2
⊢
(CHOICE → ∀𝑥AC 𝑥 = V) |
4 | | vex 3436 |
. . . . . . 7
⊢ 𝑦 ∈ V |
5 | 4 | difexi 5252 |
. . . . . 6
⊢ (𝑦 ∖ {∅}) ∈
V |
6 | | acneq 9799 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∖ {∅}) → AC 𝑥 = AC (𝑦 ∖ {∅})) |
7 | 6 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∖ {∅}) → (AC 𝑥 = V ↔ AC (𝑦 ∖ {∅}) =
V)) |
8 | 5, 7 | spcv 3544 |
. . . . 5
⊢
(∀𝑥AC
𝑥 = V → AC
(𝑦 ∖ {∅}) =
V) |
9 | | vuniex 7592 |
. . . . . . 7
⊢ ∪ 𝑦
∈ V |
10 | | id 22 |
. . . . . . 7
⊢
(AC (𝑦
∖ {∅}) = V → AC (𝑦 ∖ {∅}) = V) |
11 | 9, 10 | eleqtrrid 2846 |
. . . . . 6
⊢
(AC (𝑦
∖ {∅}) = V → ∪ 𝑦 ∈ AC (𝑦 ∖ {∅})) |
12 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ∈ 𝑦) |
13 | | elssuni 4871 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ⊆ ∪ 𝑦) |
15 | | eldifsni 4723 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → 𝑧 ≠ ∅) |
16 | 14, 15 | jca 512 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑧 ⊆ ∪ 𝑦
∧ 𝑧 ≠
∅)) |
17 | 16 | rgen 3074 |
. . . . . 6
⊢
∀𝑧 ∈
(𝑦 ∖ {∅})(𝑧 ⊆ ∪ 𝑦
∧ 𝑧 ≠
∅) |
18 | | acni2 9802 |
. . . . . 6
⊢ ((∪ 𝑦
∈ AC (𝑦 ∖
{∅}) ∧ ∀𝑧
∈ (𝑦 ∖
{∅})(𝑧 ⊆ ∪ 𝑦
∧ 𝑧 ≠ ∅))
→ ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧)) |
19 | 11, 17, 18 | sylancl 586 |
. . . . 5
⊢
(AC (𝑦
∖ {∅}) = V → ∃𝑔(𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧)) |
20 | 4 | mptex 7099 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) ∈ V |
21 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ (𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) |
22 | | eldifsn 4720 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅)) |
23 | 22 | imbi1i 350 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
24 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑔‘𝑥) = (𝑔‘𝑧)) |
25 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) |
26 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑔‘𝑧) ∈ V |
27 | 24, 25, 26 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑦 → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) = (𝑔‘𝑧)) |
28 | 12, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) = (𝑔‘𝑧)) |
29 | 28 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∖ {∅}) → (((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧 ↔ (𝑔‘𝑧) ∈ 𝑧)) |
30 | 29 | pm5.74i 270 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝑦 ∖ {∅}) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔‘𝑧) ∈ 𝑧)) |
31 | | impexp 451 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝑦 ∧ 𝑧 ≠ ∅) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ 𝑦 → (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
32 | 23, 30, 31 | 3bitr3i 301 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (𝑦 ∖ {∅}) → (𝑔‘𝑧) ∈ 𝑧) ↔ (𝑧 ∈ 𝑦 → (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
33 | 32 | ralbii2 3090 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧 ↔ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
34 | 21, 33 | sylib 217 |
. . . . . . . 8
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
35 | | fvrn0 6802 |
. . . . . . . . . . 11
⊢ (𝑔‘𝑥) ∈ (ran 𝑔 ∪ {∅}) |
36 | 35 | rgenw 3076 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝑦 (𝑔‘𝑥) ∈ (ran 𝑔 ∪ {∅}) |
37 | 25 | fmpt 6984 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑦 (𝑔‘𝑥) ∈ (ran 𝑔 ∪ {∅}) ↔ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)):𝑦⟶(ran 𝑔 ∪ {∅})) |
38 | 36, 37 | mpbi 229 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) |
39 | | ffn 6600 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)):𝑦⟶(ran 𝑔 ∪ {∅}) → (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦) |
40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 |
41 | 34, 40 | jctil 520 |
. . . . . . 7
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
42 | | fneq1 6524 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → (𝑓 Fn 𝑦 ↔ (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦)) |
43 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → (𝑓‘𝑧) = ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧)) |
44 | 43 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) |
45 | 44 | imbi2d 341 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
46 | 45 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧))) |
47 | 42, 46 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑓 = (𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) → ((𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) ↔ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)))) |
48 | 47 | spcegv 3536 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) ∈ V → (((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥)) Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → ((𝑥 ∈ 𝑦 ↦ (𝑔‘𝑥))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)))) |
49 | 20, 41, 48 | mpsyl 68 |
. . . . . 6
⊢ ((𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
50 | 49 | exlimiv 1933 |
. . . . 5
⊢
(∃𝑔(𝑔:(𝑦 ∖ {∅})⟶∪ 𝑦
∧ ∀𝑧 ∈
(𝑦 ∖ {∅})(𝑔‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
51 | 8, 19, 50 | 3syl 18 |
. . . 4
⊢
(∀𝑥AC
𝑥 = V → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
52 | 51 | alrimiv 1930 |
. . 3
⊢
(∀𝑥AC
𝑥 = V → ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
53 | | dfac4 9878 |
. . 3
⊢
(CHOICE ↔ ∀𝑦∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
54 | 52, 53 | sylibr 233 |
. 2
⊢
(∀𝑥AC
𝑥 = V →
CHOICE) |
55 | 3, 54 | impbii 208 |
1
⊢
(CHOICE ↔ ∀𝑥AC 𝑥 = V) |