Step | Hyp | Ref
| Expression |
1 | | brdomi 8757 |
. 2
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
2 | | neq0 4280 |
. . . . 5
⊢ (¬
𝐴 = ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
3 | | simpl3 1192 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑋 ∈ AC 𝐵) |
4 | | elmapi 8646 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ ((𝒫 𝑋 ∖ {∅})
↑m 𝐴)
→ 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅})) |
5 | 4 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅})) |
6 | | simpll1 1211 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) → 𝑓:𝐴–1-1→𝐵) |
7 | | f1f1orn 6736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴–1-1-onto→ran
𝑓) |
8 | | f1ocnv 6737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐴–1-1-onto→ran
𝑓 → ◡𝑓:ran 𝑓–1-1-onto→𝐴) |
9 | | f1of 6725 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝑓:ran 𝑓–1-1-onto→𝐴 → ◡𝑓:ran 𝑓⟶𝐴) |
10 | 6, 7, 8, 9 | 4syl 19 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) → ◡𝑓:ran 𝑓⟶𝐴) |
11 | 10 | ffvelrnda 6970 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 ∈ ran 𝑓) → (◡𝑓‘𝑦) ∈ 𝐴) |
12 | | simpl2 1191 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑥 ∈ 𝐴) |
13 | 12 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) ∧ ¬ 𝑦 ∈ ran 𝑓) → 𝑥 ∈ 𝐴) |
14 | 11, 13 | ifclda 4495 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) → if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥) ∈ 𝐴) |
15 | 5, 14 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) → (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅})) |
16 | | eldifsn 4721 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) ↔ ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅)) |
17 | | elpwi 4543 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ∈ 𝒫 𝑋 → (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ⊆ 𝑋) |
18 | 17 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ (((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅)) |
19 | 16, 18 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅)) |
20 | 15, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦 ∈ 𝐵) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅)) |
21 | 20 | ralrimiva 3104 |
. . . . . . . . . . 11
⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∀𝑦 ∈ 𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅)) |
22 | | acni2 9811 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ AC 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐵⟶𝑋 ∧ ∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) |
23 | 3, 21, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑘(𝑘:𝐵⟶𝑋 ∧ ∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) |
24 | | f1dm 6683 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1→𝐵 → dom 𝑓 = 𝐴) |
25 | | vex 3437 |
. . . . . . . . . . . . . . 15
⊢ 𝑓 ∈ V |
26 | 25 | dmex 7767 |
. . . . . . . . . . . . . 14
⊢ dom 𝑓 ∈ V |
27 | 24, 26 | eqeltrrdi 2849 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
28 | 27 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) → 𝐴 ∈ V) |
29 | 28 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵⟶𝑋 ∧ ∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) → 𝐴 ∈ V) |
30 | | simpll1 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → 𝑓:𝐴–1-1→𝐵) |
31 | | f1f 6679 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) |
32 | | frn 6616 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴⟶𝐵 → ran 𝑓 ⊆ 𝐵) |
33 | | ssralv 3988 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝑓 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) |
34 | 30, 31, 32, 33 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → (∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) |
35 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ran 𝑓 → if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥) = (◡𝑓‘𝑦)) |
36 | 35 | fveq2d 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ran 𝑓 → (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) = (𝑔‘(◡𝑓‘𝑦))) |
37 | 36 | eleq2d 2825 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ran 𝑓 → ((𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ↔ (𝑘‘𝑦) ∈ (𝑔‘(◡𝑓‘𝑦)))) |
38 | 37 | ralbiia 3092 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) ↔ ∀𝑦 ∈ ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘(◡𝑓‘𝑦))) |
39 | 34, 38 | syl6ib 250 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → (∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘(◡𝑓‘𝑦)))) |
40 | | f1fn 6680 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓 Fn 𝐴) |
41 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑓‘𝑧) → (𝑘‘𝑦) = (𝑘‘(𝑓‘𝑧))) |
42 | | 2fveq3 6788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑓‘𝑧) → (𝑔‘(◡𝑓‘𝑦)) = (𝑔‘(◡𝑓‘(𝑓‘𝑧)))) |
43 | 41, 42 | eleq12d 2834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑓‘𝑧) → ((𝑘‘𝑦) ∈ (𝑔‘(◡𝑓‘𝑦)) ↔ (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘(◡𝑓‘(𝑓‘𝑧))))) |
44 | 43 | ralrn 6973 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘(◡𝑓‘𝑦)) ↔ ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘(◡𝑓‘(𝑓‘𝑧))))) |
45 | 30, 40, 44 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → (∀𝑦 ∈ ran 𝑓(𝑘‘𝑦) ∈ (𝑔‘(◡𝑓‘𝑦)) ↔ ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘(◡𝑓‘(𝑓‘𝑧))))) |
46 | 39, 45 | sylibd 238 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → (∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) → ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘(◡𝑓‘(𝑓‘𝑧))))) |
47 | 30, 7 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → 𝑓:𝐴–1-1-onto→ran
𝑓) |
48 | | f1ocnvfv1 7157 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1-onto→ran
𝑓 ∧ 𝑧 ∈ 𝐴) → (◡𝑓‘(𝑓‘𝑧)) = 𝑧) |
49 | 47, 48 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) ∧ 𝑧 ∈ 𝐴) → (◡𝑓‘(𝑓‘𝑧)) = 𝑧) |
50 | 49 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) ∧ 𝑧 ∈ 𝐴) → (𝑔‘(◡𝑓‘(𝑓‘𝑧))) = (𝑔‘𝑧)) |
51 | 50 | eleq2d 2825 |
. . . . . . . . . . . . . 14
⊢
(((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) ∧ 𝑧 ∈ 𝐴) → ((𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘(◡𝑓‘(𝑓‘𝑧))) ↔ (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘𝑧))) |
52 | 51 | ralbidva 3112 |
. . . . . . . . . . . . 13
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → (∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘(◡𝑓‘(𝑓‘𝑧))) ↔ ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘𝑧))) |
53 | 46, 52 | sylibd 238 |
. . . . . . . . . . . 12
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵⟶𝑋) → (∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)) → ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘𝑧))) |
54 | 53 | impr 455 |
. . . . . . . . . . 11
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵⟶𝑋 ∧ ∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) → ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘𝑧)) |
55 | | acnlem 9813 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ ∀𝑧 ∈ 𝐴 (𝑘‘(𝑓‘𝑧)) ∈ (𝑔‘𝑧)) → ∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧)) |
56 | 29, 54, 55 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵⟶𝑋 ∧ ∀𝑦 ∈ 𝐵 (𝑘‘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (◡𝑓‘𝑦), 𝑥)))) → ∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧)) |
57 | 23, 56 | exlimddv 1939 |
. . . . . . . . 9
⊢ (((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧)) |
58 | 57 | ralrimiva 3104 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧)) |
59 | | elex 3451 |
. . . . . . . . . 10
⊢ (𝑋 ∈ AC 𝐵 → 𝑋 ∈ V) |
60 | | isacn 9809 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅})
↑m 𝐴)∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧))) |
61 | 59, 27, 60 | syl2anr 597 |
. . . . . . . . 9
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑋 ∈ AC 𝐵) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧))) |
62 | 61 | 3adant2 1130 |
. . . . . . . 8
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃ℎ∀𝑧 ∈ 𝐴 (ℎ‘𝑧) ∈ (𝑔‘𝑧))) |
63 | 58, 62 | mpbird 256 |
. . . . . . 7
⊢ ((𝑓:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵) → 𝑋 ∈ AC 𝐴) |
64 | 63 | 3exp 1118 |
. . . . . 6
⊢ (𝑓:𝐴–1-1→𝐵 → (𝑥 ∈ 𝐴 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴))) |
65 | 64 | exlimdv 1937 |
. . . . 5
⊢ (𝑓:𝐴–1-1→𝐵 → (∃𝑥 𝑥 ∈ 𝐴 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴))) |
66 | 2, 65 | syl5bi 241 |
. . . 4
⊢ (𝑓:𝐴–1-1→𝐵 → (¬ 𝐴 = ∅ → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴))) |
67 | | acneq 9808 |
. . . . . . 7
⊢ (𝐴 = ∅ → AC
𝐴 = AC
∅) |
68 | | 0fin 8963 |
. . . . . . . 8
⊢ ∅
∈ Fin |
69 | | finacn 9815 |
. . . . . . . 8
⊢ (∅
∈ Fin → AC ∅ = V) |
70 | 68, 69 | ax-mp 5 |
. . . . . . 7
⊢ AC
∅ = V |
71 | 67, 70 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐴 = ∅ → AC
𝐴 = V) |
72 | 71 | eleq2d 2825 |
. . . . 5
⊢ (𝐴 = ∅ → (𝑋 ∈ AC 𝐴 ↔ 𝑋 ∈ V)) |
73 | 59, 72 | syl5ibr 245 |
. . . 4
⊢ (𝐴 = ∅ → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) |
74 | 66, 73 | pm2.61d2 181 |
. . 3
⊢ (𝑓:𝐴–1-1→𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) |
75 | 74 | exlimiv 1934 |
. 2
⊢
(∃𝑓 𝑓:𝐴–1-1→𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) |
76 | 1, 75 | syl 17 |
1
⊢ (𝐴 ≼ 𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) |