MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Structured version   Visualization version   GIF version

Theorem acndom 9072
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))

Proof of Theorem acndom
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8118 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 neq0 4077 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
3 simpl3 1231 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑋AC 𝐵)
4 elmapi 8029 . . . . . . . . . . . . . . 15 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54ad2antlr 706 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
6 simpll1 1254 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑓:𝐴1-1𝐵)
7 f1f1orn 6287 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
8 f1ocnv 6288 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝐴)
9 f1of 6276 . . . . . . . . . . . . . . . . 17 (𝑓:ran 𝑓1-1-onto𝐴𝑓:ran 𝑓𝐴)
106, 7, 8, 94syl 19 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑓:ran 𝑓𝐴)
1110ffvelrnda 6500 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) ∧ 𝑦 ∈ ran 𝑓) → (𝑓𝑦) ∈ 𝐴)
12 simpl2 1229 . . . . . . . . . . . . . . . 16 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑥𝐴)
1312ad2antrr 705 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) ∧ ¬ 𝑦 ∈ ran 𝑓) → 𝑥𝐴)
1411, 13ifclda 4259 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) ∈ 𝐴)
155, 14ffvelrnd 6501 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}))
16 eldifsn 4453 . . . . . . . . . . . . . 14 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) ↔ ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
17 elpwi 4307 . . . . . . . . . . . . . . 15 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋)
1817anim1i 602 . . . . . . . . . . . . . 14 (((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
1916, 18sylbi 207 . . . . . . . . . . . . 13 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2015, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2120ralrimiva 3115 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
22 acni2 9067 . . . . . . . . . . 11 ((𝑋AC 𝐵 ∧ ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
233, 21, 22syl2anc 573 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
24 f1dm 6243 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
25 vex 3354 . . . . . . . . . . . . . . 15 𝑓 ∈ V
2625dmex 7244 . . . . . . . . . . . . . 14 dom 𝑓 ∈ V
2724, 26syl6eqelr 2859 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
28273ad2ant1 1127 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝐴 ∈ V)
2928ad2antrr 705 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → 𝐴 ∈ V)
30 simpll1 1254 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1𝐵)
31 f1f 6239 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
32 frn 6191 . . . . . . . . . . . . . . . 16 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
33 ssralv 3815 . . . . . . . . . . . . . . . 16 (ran 𝑓𝐵 → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
35 iftrue 4231 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran 𝑓 → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) = (𝑓𝑦))
3635fveq2d 6334 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran 𝑓 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) = (𝑔‘(𝑓𝑦)))
3736eleq2d 2836 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran 𝑓 → ((𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ (𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
3837ralbiia 3128 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)))
3934, 38syl6ib 241 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
40 f1fn 6240 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1𝐵𝑓 Fn 𝐴)
41 fveq2 6330 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑘𝑦) = (𝑘‘(𝑓𝑧)))
42 fveq2 6330 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑧) → (𝑓𝑦) = (𝑓‘(𝑓𝑧)))
4342fveq2d 6334 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑔‘(𝑓𝑦)) = (𝑔‘(𝑓‘(𝑓𝑧))))
4441, 43eleq12d 2844 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4544ralrn 6503 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4630, 40, 453syl 18 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4739, 46sylibd 229 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4830, 7syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1-onto→ran 𝑓)
49 f1ocnvfv1 6673 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ran 𝑓𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5048, 49sylan 569 . . . . . . . . . . . . . . . 16 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5150fveq2d 6334 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑔‘(𝑓‘(𝑓𝑧))) = (𝑔𝑧))
5251eleq2d 2836 . . . . . . . . . . . . . 14 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → ((𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5352ralbidva 3134 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5447, 53sylibd 229 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5554impr 442 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧))
56 acnlem 9069 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5729, 55, 56syl2anc 573 . . . . . . . . . 10 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5823, 57exlimddv 2015 . . . . . . . . 9 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5958ralrimiva 3115 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
60 elex 3364 . . . . . . . . . 10 (𝑋AC 𝐵𝑋 ∈ V)
61 isacn 9065 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6260, 27, 61syl2anr 584 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
63623adant2 1125 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6459, 63mpbird 247 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝑋AC 𝐴)
65643exp 1112 . . . . . 6 (𝑓:𝐴1-1𝐵 → (𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
6665exlimdv 2013 . . . . 5 (𝑓:𝐴1-1𝐵 → (∃𝑥 𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
672, 66syl5bi 232 . . . 4 (𝑓:𝐴1-1𝐵 → (¬ 𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴)))
68 acneq 9064 . . . . . . 7 (𝐴 = ∅ → AC 𝐴 = AC ∅)
69 0fin 8342 . . . . . . . 8 ∅ ∈ Fin
70 finacn 9071 . . . . . . . 8 (∅ ∈ Fin → AC ∅ = V)
7169, 70ax-mp 5 . . . . . . 7 AC ∅ = V
7268, 71syl6eq 2821 . . . . . 6 (𝐴 = ∅ → AC 𝐴 = V)
7372eleq2d 2836 . . . . 5 (𝐴 = ∅ → (𝑋AC 𝐴𝑋 ∈ V))
7460, 73syl5ibr 236 . . . 4 (𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴))
7567, 74pm2.61d2 173 . . 3 (𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
7675exlimiv 2010 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
771, 76syl 17 1 (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  Vcvv 3351  cdif 3720  wss 3723  c0 4063  ifcif 4225  𝒫 cpw 4297  {csn 4316   class class class wbr 4786  ccnv 5248  dom cdm 5249  ran crn 5250   Fn wfn 6024  wf 6025  1-1wf1 6026  1-1-ontowf1o 6028  cfv 6029  (class class class)co 6791  𝑚 cmap 8007  cdom 8105  Fincfn 8107  AC wacn 8962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-1o 7711  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-fin 8111  df-acn 8966
This theorem is referenced by:  acnnum  9073  acnen  9074  iunctb  9596
  Copyright terms: Public domain W3C validator