MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Structured version   Visualization version   GIF version

Theorem acndom 10091
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))

Proof of Theorem acndom
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8999 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 neq0 4352 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
3 simpl3 1194 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑋AC 𝐵)
4 elmapi 8889 . . . . . . . . . . . . . . 15 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
6 simpll1 1213 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → 𝑓:𝐴1-1𝐵)
7 f1f1orn 6859 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
8 f1ocnv 6860 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝐴)
9 f1of 6848 . . . . . . . . . . . . . . . . 17 (𝑓:ran 𝑓1-1-onto𝐴𝑓:ran 𝑓𝐴)
106, 7, 8, 94syl 19 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → 𝑓:ran 𝑓𝐴)
1110ffvelcdmda 7104 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) ∧ 𝑦 ∈ ran 𝑓) → (𝑓𝑦) ∈ 𝐴)
12 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑥𝐴)
1312ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) ∧ ¬ 𝑦 ∈ ran 𝑓) → 𝑥𝐴)
1411, 13ifclda 4561 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) ∈ 𝐴)
155, 14ffvelcdmd 7105 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}))
16 eldifsn 4786 . . . . . . . . . . . . . 14 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) ↔ ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
17 elpwi 4607 . . . . . . . . . . . . . . 15 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋)
1817anim1i 615 . . . . . . . . . . . . . 14 (((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
1916, 18sylbi 217 . . . . . . . . . . . . 13 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2015, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2120ralrimiva 3146 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
22 acni2 10086 . . . . . . . . . . 11 ((𝑋AC 𝐵 ∧ ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
233, 21, 22syl2anc 584 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
24 f1dm 6808 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
25 vex 3484 . . . . . . . . . . . . . . 15 𝑓 ∈ V
2625dmex 7931 . . . . . . . . . . . . . 14 dom 𝑓 ∈ V
2724, 26eqeltrrdi 2850 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
28273ad2ant1 1134 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝐴 ∈ V)
2928ad2antrr 726 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → 𝐴 ∈ V)
30 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1𝐵)
31 f1f 6804 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
32 frn 6743 . . . . . . . . . . . . . . . 16 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
33 ssralv 4052 . . . . . . . . . . . . . . . 16 (ran 𝑓𝐵 → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
35 iftrue 4531 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran 𝑓 → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) = (𝑓𝑦))
3635fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran 𝑓 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) = (𝑔‘(𝑓𝑦)))
3736eleq2d 2827 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran 𝑓 → ((𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ (𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
3837ralbiia 3091 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)))
3934, 38imbitrdi 251 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
40 f1fn 6805 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1𝐵𝑓 Fn 𝐴)
41 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑘𝑦) = (𝑘‘(𝑓𝑧)))
42 2fveq3 6911 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑔‘(𝑓𝑦)) = (𝑔‘(𝑓‘(𝑓𝑧))))
4341, 42eleq12d 2835 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4443ralrn 7108 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4530, 40, 443syl 18 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4639, 45sylibd 239 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4730, 7syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1-onto→ran 𝑓)
48 f1ocnvfv1 7296 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ran 𝑓𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
4947, 48sylan 580 . . . . . . . . . . . . . . . 16 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5049fveq2d 6910 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑔‘(𝑓‘(𝑓𝑧))) = (𝑔𝑧))
5150eleq2d 2827 . . . . . . . . . . . . . 14 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → ((𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5251ralbidva 3176 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5346, 52sylibd 239 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5453impr 454 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧))
55 acnlem 10088 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5629, 54, 55syl2anc 584 . . . . . . . . . 10 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5723, 56exlimddv 1935 . . . . . . . . 9 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5857ralrimiva 3146 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
59 elex 3501 . . . . . . . . . 10 (𝑋AC 𝐵𝑋 ∈ V)
60 isacn 10084 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6159, 27, 60syl2anr 597 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
62613adant2 1132 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6358, 62mpbird 257 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝑋AC 𝐴)
64633exp 1120 . . . . . 6 (𝑓:𝐴1-1𝐵 → (𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
6564exlimdv 1933 . . . . 5 (𝑓:𝐴1-1𝐵 → (∃𝑥 𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
662, 65biimtrid 242 . . . 4 (𝑓:𝐴1-1𝐵 → (¬ 𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴)))
67 acneq 10083 . . . . . . 7 (𝐴 = ∅ → AC 𝐴 = AC ∅)
68 0fi 9082 . . . . . . . 8 ∅ ∈ Fin
69 finacn 10090 . . . . . . . 8 (∅ ∈ Fin → AC ∅ = V)
7068, 69ax-mp 5 . . . . . . 7 AC ∅ = V
7167, 70eqtrdi 2793 . . . . . 6 (𝐴 = ∅ → AC 𝐴 = V)
7271eleq2d 2827 . . . . 5 (𝐴 = ∅ → (𝑋AC 𝐴𝑋 ∈ V))
7359, 72imbitrrid 246 . . . 4 (𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴))
7466, 73pm2.61d2 181 . . 3 (𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
7574exlimiv 1930 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
761, 75syl 17 1 (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  wss 3951  c0 4333  ifcif 4525  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  ccnv 5684  dom cdm 5685  ran crn 5686   Fn wfn 6556  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  m cmap 8866  cdom 8983  Fincfn 8985  AC wacn 9978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-map 8868  df-en 8986  df-dom 8987  df-fin 8989  df-acn 9982
This theorem is referenced by:  acnnum  10092  acnen  10093  iunctb  10614
  Copyright terms: Public domain W3C validator