MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Structured version   Visualization version   GIF version

Theorem acndom 9271
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))

Proof of Theorem acndom
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8317 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 neq0 4196 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
3 simpl3 1173 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑋AC 𝐵)
4 elmapi 8228 . . . . . . . . . . . . . . 15 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54ad2antlr 714 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
6 simpll1 1192 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑓:𝐴1-1𝐵)
7 f1f1orn 6455 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
8 f1ocnv 6456 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝐴)
9 f1of 6444 . . . . . . . . . . . . . . . . 17 (𝑓:ran 𝑓1-1-onto𝐴𝑓:ran 𝑓𝐴)
106, 7, 8, 94syl 19 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → 𝑓:ran 𝑓𝐴)
1110ffvelrnda 6676 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) ∧ 𝑦 ∈ ran 𝑓) → (𝑓𝑦) ∈ 𝐴)
12 simpl2 1172 . . . . . . . . . . . . . . . 16 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → 𝑥𝐴)
1312ad2antrr 713 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) ∧ ¬ 𝑦 ∈ ran 𝑓) → 𝑥𝐴)
1411, 13ifclda 4384 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) ∈ 𝐴)
155, 14ffvelrnd 6677 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}))
16 eldifsn 4593 . . . . . . . . . . . . . 14 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) ↔ ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
17 elpwi 4432 . . . . . . . . . . . . . . 15 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋)
1817anim1i 605 . . . . . . . . . . . . . 14 (((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
1916, 18sylbi 209 . . . . . . . . . . . . 13 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2015, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑦𝐵) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2120ralrimiva 3133 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
22 acni2 9266 . . . . . . . . . . 11 ((𝑋AC 𝐵 ∧ ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
233, 21, 22syl2anc 576 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
24 f1dm 6408 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
25 vex 3419 . . . . . . . . . . . . . . 15 𝑓 ∈ V
2625dmex 7431 . . . . . . . . . . . . . 14 dom 𝑓 ∈ V
2724, 26syl6eqelr 2876 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
28273ad2ant1 1113 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝐴 ∈ V)
2928ad2antrr 713 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → 𝐴 ∈ V)
30 simpll1 1192 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1𝐵)
31 f1f 6404 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
32 frn 6350 . . . . . . . . . . . . . . . 16 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
33 ssralv 3924 . . . . . . . . . . . . . . . 16 (ran 𝑓𝐵 → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
35 iftrue 4356 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran 𝑓 → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) = (𝑓𝑦))
3635fveq2d 6503 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran 𝑓 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) = (𝑔‘(𝑓𝑦)))
3736eleq2d 2852 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran 𝑓 → ((𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ (𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
3837ralbiia 3115 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)))
3934, 38syl6ib 243 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
40 f1fn 6405 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1𝐵𝑓 Fn 𝐴)
41 fveq2 6499 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑘𝑦) = (𝑘‘(𝑓𝑧)))
42 2fveq3 6504 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑔‘(𝑓𝑦)) = (𝑔‘(𝑓‘(𝑓𝑧))))
4341, 42eleq12d 2861 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4443ralrn 6679 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4530, 40, 443syl 18 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4639, 45sylibd 231 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4730, 7syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1-onto→ran 𝑓)
48 f1ocnvfv1 6858 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ran 𝑓𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
4947, 48sylan 572 . . . . . . . . . . . . . . . 16 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5049fveq2d 6503 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑔‘(𝑓‘(𝑓𝑧))) = (𝑔𝑧))
5150eleq2d 2852 . . . . . . . . . . . . . 14 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → ((𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5251ralbidva 3147 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5346, 52sylibd 231 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5453impr 447 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧))
55 acnlem 9268 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5629, 54, 55syl2anc 576 . . . . . . . . . 10 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5723, 56exlimddv 1894 . . . . . . . . 9 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5857ralrimiva 3133 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
59 elex 3434 . . . . . . . . . 10 (𝑋AC 𝐵𝑋 ∈ V)
60 isacn 9264 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6159, 27, 60syl2anr 587 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
62613adant2 1111 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑𝑚 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6358, 62mpbird 249 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝑋AC 𝐴)
64633exp 1099 . . . . . 6 (𝑓:𝐴1-1𝐵 → (𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
6564exlimdv 1892 . . . . 5 (𝑓:𝐴1-1𝐵 → (∃𝑥 𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
662, 65syl5bi 234 . . . 4 (𝑓:𝐴1-1𝐵 → (¬ 𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴)))
67 acneq 9263 . . . . . . 7 (𝐴 = ∅ → AC 𝐴 = AC ∅)
68 0fin 8541 . . . . . . . 8 ∅ ∈ Fin
69 finacn 9270 . . . . . . . 8 (∅ ∈ Fin → AC ∅ = V)
7068, 69ax-mp 5 . . . . . . 7 AC ∅ = V
7167, 70syl6eq 2831 . . . . . 6 (𝐴 = ∅ → AC 𝐴 = V)
7271eleq2d 2852 . . . . 5 (𝐴 = ∅ → (𝑋AC 𝐴𝑋 ∈ V))
7359, 72syl5ibr 238 . . . 4 (𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴))
7466, 73pm2.61d2 174 . . 3 (𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
7574exlimiv 1889 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
761, 75syl 17 1 (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wex 1742  wcel 2050  wne 2968  wral 3089  Vcvv 3416  cdif 3827  wss 3830  c0 4179  ifcif 4350  𝒫 cpw 4422  {csn 4441   class class class wbr 4929  ccnv 5406  dom cdm 5407  ran crn 5408   Fn wfn 6183  wf 6184  1-1wf1 6185  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  𝑚 cmap 8206  cdom 8304  Fincfn 8306  AC wacn 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-1o 7905  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-fin 8310  df-acn 9165
This theorem is referenced by:  acnnum  9272  acnen  9273  iunctb  9794
  Copyright terms: Public domain W3C validator