MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom Structured version   Visualization version   GIF version

Theorem acndom 10120
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))

Proof of Theorem acndom
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 9018 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
2 neq0 4375 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
3 simpl3 1193 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑋AC 𝐵)
4 elmapi 8907 . . . . . . . . . . . . . . 15 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
6 simpll1 1212 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → 𝑓:𝐴1-1𝐵)
7 f1f1orn 6873 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
8 f1ocnv 6874 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝐴)
9 f1of 6862 . . . . . . . . . . . . . . . . 17 (𝑓:ran 𝑓1-1-onto𝐴𝑓:ran 𝑓𝐴)
106, 7, 8, 94syl 19 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → 𝑓:ran 𝑓𝐴)
1110ffvelcdmda 7118 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) ∧ 𝑦 ∈ ran 𝑓) → (𝑓𝑦) ∈ 𝐴)
12 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑥𝐴)
1312ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) ∧ ¬ 𝑦 ∈ ran 𝑓) → 𝑥𝐴)
1411, 13ifclda 4583 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) ∈ 𝐴)
155, 14ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}))
16 eldifsn 4811 . . . . . . . . . . . . . 14 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) ↔ ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
17 elpwi 4629 . . . . . . . . . . . . . . 15 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋)
1817anim1i 614 . . . . . . . . . . . . . 14 (((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ 𝒫 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
1916, 18sylbi 217 . . . . . . . . . . . . 13 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ∈ (𝒫 𝑋 ∖ {∅}) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2015, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑦𝐵) → ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
2120ralrimiva 3152 . . . . . . . . . . 11 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅))
22 acni2 10115 . . . . . . . . . . 11 ((𝑋AC 𝐵 ∧ ∀𝑦𝐵 ((𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ⊆ 𝑋 ∧ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
233, 21, 22syl2anc 583 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑘(𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
24 f1dm 6821 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵 → dom 𝑓 = 𝐴)
25 vex 3492 . . . . . . . . . . . . . . 15 𝑓 ∈ V
2625dmex 7949 . . . . . . . . . . . . . 14 dom 𝑓 ∈ V
2724, 26eqeltrrdi 2853 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
28273ad2ant1 1133 . . . . . . . . . . . 12 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝐴 ∈ V)
2928ad2antrr 725 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → 𝐴 ∈ V)
30 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1𝐵)
31 f1f 6817 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
32 frn 6754 . . . . . . . . . . . . . . . 16 (𝑓:𝐴𝐵 → ran 𝑓𝐵)
33 ssralv 4077 . . . . . . . . . . . . . . . 16 (ran 𝑓𝐵 → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
3430, 31, 32, 334syl 19 . . . . . . . . . . . . . . 15 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥))))
35 iftrue 4554 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran 𝑓 → if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥) = (𝑓𝑦))
3635fveq2d 6924 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran 𝑓 → (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) = (𝑔‘(𝑓𝑦)))
3736eleq2d 2830 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran 𝑓 → ((𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ (𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
3837ralbiia 3097 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) ↔ ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)))
3934, 38imbitrdi 251 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦))))
40 f1fn 6818 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1𝐵𝑓 Fn 𝐴)
41 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑘𝑦) = (𝑘‘(𝑓𝑧)))
42 2fveq3 6925 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → (𝑔‘(𝑓𝑦)) = (𝑔‘(𝑓‘(𝑓𝑧))))
4341, 42eleq12d 2838 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4443ralrn 7122 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4530, 40, 443syl 18 . . . . . . . . . . . . . 14 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦 ∈ ran 𝑓(𝑘𝑦) ∈ (𝑔‘(𝑓𝑦)) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4639, 45sylibd 239 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧)))))
4730, 7syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → 𝑓:𝐴1-1-onto→ran 𝑓)
48 f1ocnvfv1 7312 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto→ran 𝑓𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
4947, 48sylan 579 . . . . . . . . . . . . . . . 16 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑓‘(𝑓𝑧)) = 𝑧)
5049fveq2d 6924 . . . . . . . . . . . . . . 15 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → (𝑔‘(𝑓‘(𝑓𝑧))) = (𝑔𝑧))
5150eleq2d 2830 . . . . . . . . . . . . . 14 (((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) ∧ 𝑧𝐴) → ((𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5251ralbidva 3182 . . . . . . . . . . . . 13 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔‘(𝑓‘(𝑓𝑧))) ↔ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5346, 52sylibd 239 . . . . . . . . . . . 12 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐵𝑋) → (∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)))
5453impr 454 . . . . . . . . . . 11 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧))
55 acnlem 10117 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑘‘(𝑓𝑧)) ∈ (𝑔𝑧)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5629, 54, 55syl2anc 583 . . . . . . . . . 10 ((((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐵𝑋 ∧ ∀𝑦𝐵 (𝑘𝑦) ∈ (𝑔‘if(𝑦 ∈ ran 𝑓, (𝑓𝑦), 𝑥)))) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5723, 56exlimddv 1934 . . . . . . . . 9 (((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
5857ralrimiva 3152 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧))
59 elex 3509 . . . . . . . . . 10 (𝑋AC 𝐵𝑋 ∈ V)
60 isacn 10113 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6159, 27, 60syl2anr 596 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
62613adant2 1131 . . . . . . . 8 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑧𝐴 (𝑧) ∈ (𝑔𝑧)))
6358, 62mpbird 257 . . . . . . 7 ((𝑓:𝐴1-1𝐵𝑥𝐴𝑋AC 𝐵) → 𝑋AC 𝐴)
64633exp 1119 . . . . . 6 (𝑓:𝐴1-1𝐵 → (𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
6564exlimdv 1932 . . . . 5 (𝑓:𝐴1-1𝐵 → (∃𝑥 𝑥𝐴 → (𝑋AC 𝐵𝑋AC 𝐴)))
662, 65biimtrid 242 . . . 4 (𝑓:𝐴1-1𝐵 → (¬ 𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴)))
67 acneq 10112 . . . . . . 7 (𝐴 = ∅ → AC 𝐴 = AC ∅)
68 0fi 9108 . . . . . . . 8 ∅ ∈ Fin
69 finacn 10119 . . . . . . . 8 (∅ ∈ Fin → AC ∅ = V)
7068, 69ax-mp 5 . . . . . . 7 AC ∅ = V
7167, 70eqtrdi 2796 . . . . . 6 (𝐴 = ∅ → AC 𝐴 = V)
7271eleq2d 2830 . . . . 5 (𝐴 = ∅ → (𝑋AC 𝐴𝑋 ∈ V))
7359, 72imbitrrid 246 . . . 4 (𝐴 = ∅ → (𝑋AC 𝐵𝑋AC 𝐴))
7466, 73pm2.61d2 181 . . 3 (𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
7574exlimiv 1929 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
761, 75syl 17 1 (𝐴𝐵 → (𝑋AC 𝐵𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cdif 3973  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  ccnv 5699  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  cdom 9001  Fincfn 9003  AC wacn 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-acn 10011
This theorem is referenced by:  acnnum  10121  acnen  10122  iunctb  10643
  Copyright terms: Public domain W3C validator