MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac13 Structured version   Visualization version   GIF version

Theorem dfac13 10103
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac13 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)

Proof of Theorem dfac13
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . 4 𝑥 ∈ V
2 acacni 10101 . . . . 5 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
32elvd 3456 . . . 4 (CHOICEAC 𝑥 = V)
41, 3eleqtrrid 2836 . . 3 (CHOICE𝑥AC 𝑥)
54alrimiv 1927 . 2 (CHOICE → ∀𝑥 𝑥AC 𝑥)
6 vpwex 5335 . . . . . . . 8 𝒫 𝑧 ∈ V
7 id 22 . . . . . . . . 9 (𝑥 = 𝒫 𝑧𝑥 = 𝒫 𝑧)
8 acneq 10003 . . . . . . . . 9 (𝑥 = 𝒫 𝑧AC 𝑥 = AC 𝒫 𝑧)
97, 8eleq12d 2823 . . . . . . . 8 (𝑥 = 𝒫 𝑧 → (𝑥AC 𝑥 ↔ 𝒫 𝑧AC 𝒫 𝑧))
106, 9spcv 3574 . . . . . . 7 (∀𝑥 𝑥AC 𝑥 → 𝒫 𝑧AC 𝒫 𝑧)
11 vex 3454 . . . . . . . 8 𝑦 ∈ V
12 vex 3454 . . . . . . . . . . 11 𝑧 ∈ V
1312canth2 9100 . . . . . . . . . 10 𝑧 ≺ 𝒫 𝑧
14 sdomdom 8954 . . . . . . . . . 10 (𝑧 ≺ 𝒫 𝑧𝑧 ≼ 𝒫 𝑧)
15 acndom2 10014 . . . . . . . . . 10 (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧)
17 acnnum 10012 . . . . . . . . 9 (𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
1816, 17sylib 218 . . . . . . . 8 (𝒫 𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
19 numacn 10009 . . . . . . . 8 (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧AC 𝑦))
2011, 18, 19mpsyl 68 . . . . . . 7 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝑦)
2110, 20syl 17 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧AC 𝑦)
2212a1i 11 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧 ∈ V)
2321, 222thd 265 . . . . 5 (∀𝑥 𝑥AC 𝑥 → (𝑧AC 𝑦𝑧 ∈ V))
2423eqrdv 2728 . . . 4 (∀𝑥 𝑥AC 𝑥AC 𝑦 = V)
2524alrimiv 1927 . . 3 (∀𝑥 𝑥AC 𝑥 → ∀𝑦AC 𝑦 = V)
26 dfacacn 10102 . . 3 (CHOICE ↔ ∀𝑦AC 𝑦 = V)
2725, 26sylibr 234 . 2 (∀𝑥 𝑥AC 𝑥CHOICE)
285, 27impbii 209 1 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  cdom 8919  csdm 8920  cardccrd 9895  AC wacn 9898  CHOICEwac 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-acn 9902  df-ac 10076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator