Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac13 Structured version   Visualization version   GIF version

Theorem dfac13 9595
 Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac13 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)

Proof of Theorem dfac13
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3414 . . . 4 𝑥 ∈ V
2 acacni 9593 . . . . 5 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
32elvd 3417 . . . 4 (CHOICEAC 𝑥 = V)
41, 3eleqtrrid 2860 . . 3 (CHOICE𝑥AC 𝑥)
54alrimiv 1929 . 2 (CHOICE → ∀𝑥 𝑥AC 𝑥)
6 vpwex 5247 . . . . . . . 8 𝒫 𝑧 ∈ V
7 id 22 . . . . . . . . 9 (𝑥 = 𝒫 𝑧𝑥 = 𝒫 𝑧)
8 acneq 9496 . . . . . . . . 9 (𝑥 = 𝒫 𝑧AC 𝑥 = AC 𝒫 𝑧)
97, 8eleq12d 2847 . . . . . . . 8 (𝑥 = 𝒫 𝑧 → (𝑥AC 𝑥 ↔ 𝒫 𝑧AC 𝒫 𝑧))
106, 9spcv 3525 . . . . . . 7 (∀𝑥 𝑥AC 𝑥 → 𝒫 𝑧AC 𝒫 𝑧)
11 vex 3414 . . . . . . . 8 𝑦 ∈ V
12 vex 3414 . . . . . . . . . . 11 𝑧 ∈ V
1312canth2 8692 . . . . . . . . . 10 𝑧 ≺ 𝒫 𝑧
14 sdomdom 8556 . . . . . . . . . 10 (𝑧 ≺ 𝒫 𝑧𝑧 ≼ 𝒫 𝑧)
15 acndom2 9507 . . . . . . . . . 10 (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧)
17 acnnum 9505 . . . . . . . . 9 (𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
1816, 17sylib 221 . . . . . . . 8 (𝒫 𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
19 numacn 9502 . . . . . . . 8 (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧AC 𝑦))
2011, 18, 19mpsyl 68 . . . . . . 7 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝑦)
2110, 20syl 17 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧AC 𝑦)
2212a1i 11 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧 ∈ V)
2321, 222thd 268 . . . . 5 (∀𝑥 𝑥AC 𝑥 → (𝑧AC 𝑦𝑧 ∈ V))
2423eqrdv 2757 . . . 4 (∀𝑥 𝑥AC 𝑥AC 𝑦 = V)
2524alrimiv 1929 . . 3 (∀𝑥 𝑥AC 𝑥 → ∀𝑦AC 𝑦 = V)
26 dfacacn 9594 . . 3 (CHOICE ↔ ∀𝑦AC 𝑦 = V)
2725, 26sylibr 237 . 2 (∀𝑥 𝑥AC 𝑥CHOICE)
285, 27impbii 212 1 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1537   = wceq 1539   ∈ wcel 2112  Vcvv 3410  𝒫 cpw 4495   class class class wbr 5033  dom cdm 5525   ≼ cdom 8526   ≺ csdm 8527  cardccrd 9390  AC wacn 9393  CHOICEwac 9568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-card 9394  df-acn 9397  df-ac 9569 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator