Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac13 | Structured version Visualization version GIF version |
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
dfac13 | ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | acacni 9896 | . . . . 5 ⊢ ((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) | |
3 | 2 | elvd 3439 | . . . 4 ⊢ (CHOICE → AC 𝑥 = V) |
4 | 1, 3 | eleqtrrid 2846 | . . 3 ⊢ (CHOICE → 𝑥 ∈ AC 𝑥) |
5 | 4 | alrimiv 1930 | . 2 ⊢ (CHOICE → ∀𝑥 𝑥 ∈ AC 𝑥) |
6 | vpwex 5300 | . . . . . . . 8 ⊢ 𝒫 𝑧 ∈ V | |
7 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧) | |
8 | acneq 9799 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧) | |
9 | 7, 8 | eleq12d 2833 | . . . . . . . 8 ⊢ (𝑥 = 𝒫 𝑧 → (𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧)) |
10 | 6, 9 | spcv 3544 | . . . . . . 7 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧) |
11 | vex 3436 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
12 | vex 3436 | . . . . . . . . . . 11 ⊢ 𝑧 ∈ V | |
13 | 12 | canth2 8917 | . . . . . . . . . 10 ⊢ 𝑧 ≺ 𝒫 𝑧 |
14 | sdomdom 8768 | . . . . . . . . . 10 ⊢ (𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧) | |
15 | acndom2 9810 | . . . . . . . . . 10 ⊢ (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧)) | |
16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧) |
17 | acnnum 9808 | . . . . . . . . 9 ⊢ (𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card) | |
18 | 16, 17 | sylib 217 | . . . . . . . 8 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card) |
19 | numacn 9805 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦)) | |
20 | 11, 18, 19 | mpsyl 68 | . . . . . . 7 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦) |
21 | 10, 20 | syl 17 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦) |
22 | 12 | a1i 11 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V) |
23 | 21, 22 | 2thd 264 | . . . . 5 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → (𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V)) |
24 | 23 | eqrdv 2736 | . . . 4 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V) |
25 | 24 | alrimiv 1930 | . . 3 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → ∀𝑦AC 𝑦 = V) |
26 | dfacacn 9897 | . . 3 ⊢ (CHOICE ↔ ∀𝑦AC 𝑦 = V) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → CHOICE) |
28 | 5, 27 | impbii 208 | 1 ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 class class class wbr 5074 dom cdm 5589 ≼ cdom 8731 ≺ csdm 8732 cardccrd 9693 AC wacn 9696 CHOICEwac 9871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-acn 9700 df-ac 9872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |