MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac13 Structured version   Visualization version   GIF version

Theorem dfac13 10212
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac13 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)

Proof of Theorem dfac13
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . 4 𝑥 ∈ V
2 acacni 10210 . . . . 5 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
32elvd 3494 . . . 4 (CHOICEAC 𝑥 = V)
41, 3eleqtrrid 2851 . . 3 (CHOICE𝑥AC 𝑥)
54alrimiv 1926 . 2 (CHOICE → ∀𝑥 𝑥AC 𝑥)
6 vpwex 5395 . . . . . . . 8 𝒫 𝑧 ∈ V
7 id 22 . . . . . . . . 9 (𝑥 = 𝒫 𝑧𝑥 = 𝒫 𝑧)
8 acneq 10112 . . . . . . . . 9 (𝑥 = 𝒫 𝑧AC 𝑥 = AC 𝒫 𝑧)
97, 8eleq12d 2838 . . . . . . . 8 (𝑥 = 𝒫 𝑧 → (𝑥AC 𝑥 ↔ 𝒫 𝑧AC 𝒫 𝑧))
106, 9spcv 3618 . . . . . . 7 (∀𝑥 𝑥AC 𝑥 → 𝒫 𝑧AC 𝒫 𝑧)
11 vex 3492 . . . . . . . 8 𝑦 ∈ V
12 vex 3492 . . . . . . . . . . 11 𝑧 ∈ V
1312canth2 9196 . . . . . . . . . 10 𝑧 ≺ 𝒫 𝑧
14 sdomdom 9040 . . . . . . . . . 10 (𝑧 ≺ 𝒫 𝑧𝑧 ≼ 𝒫 𝑧)
15 acndom2 10123 . . . . . . . . . 10 (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧)
17 acnnum 10121 . . . . . . . . 9 (𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
1816, 17sylib 218 . . . . . . . 8 (𝒫 𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
19 numacn 10118 . . . . . . . 8 (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧AC 𝑦))
2011, 18, 19mpsyl 68 . . . . . . 7 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝑦)
2110, 20syl 17 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧AC 𝑦)
2212a1i 11 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧 ∈ V)
2321, 222thd 265 . . . . 5 (∀𝑥 𝑥AC 𝑥 → (𝑧AC 𝑦𝑧 ∈ V))
2423eqrdv 2738 . . . 4 (∀𝑥 𝑥AC 𝑥AC 𝑦 = V)
2524alrimiv 1926 . . 3 (∀𝑥 𝑥AC 𝑥 → ∀𝑦AC 𝑦 = V)
26 dfacacn 10211 . . 3 (CHOICE ↔ ∀𝑦AC 𝑦 = V)
2725, 26sylibr 234 . 2 (∀𝑥 𝑥AC 𝑥CHOICE)
285, 27impbii 209 1 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  cdom 9001  csdm 9002  cardccrd 10004  AC wacn 10007  CHOICEwac 10184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator