MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac13 Structured version   Visualization version   GIF version

Theorem dfac13 10034
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac13 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)

Proof of Theorem dfac13
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . 4 𝑥 ∈ V
2 acacni 10032 . . . . 5 ((CHOICE𝑥 ∈ V) → AC 𝑥 = V)
32elvd 3442 . . . 4 (CHOICEAC 𝑥 = V)
41, 3eleqtrrid 2838 . . 3 (CHOICE𝑥AC 𝑥)
54alrimiv 1928 . 2 (CHOICE → ∀𝑥 𝑥AC 𝑥)
6 vpwex 5313 . . . . . . . 8 𝒫 𝑧 ∈ V
7 id 22 . . . . . . . . 9 (𝑥 = 𝒫 𝑧𝑥 = 𝒫 𝑧)
8 acneq 9934 . . . . . . . . 9 (𝑥 = 𝒫 𝑧AC 𝑥 = AC 𝒫 𝑧)
97, 8eleq12d 2825 . . . . . . . 8 (𝑥 = 𝒫 𝑧 → (𝑥AC 𝑥 ↔ 𝒫 𝑧AC 𝒫 𝑧))
106, 9spcv 3555 . . . . . . 7 (∀𝑥 𝑥AC 𝑥 → 𝒫 𝑧AC 𝒫 𝑧)
11 vex 3440 . . . . . . . 8 𝑦 ∈ V
12 vex 3440 . . . . . . . . . . 11 𝑧 ∈ V
1312canth2 9043 . . . . . . . . . 10 𝑧 ≺ 𝒫 𝑧
14 sdomdom 8902 . . . . . . . . . 10 (𝑧 ≺ 𝒫 𝑧𝑧 ≼ 𝒫 𝑧)
15 acndom2 9945 . . . . . . . . . 10 (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝒫 𝑧)
17 acnnum 9943 . . . . . . . . 9 (𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
1816, 17sylib 218 . . . . . . . 8 (𝒫 𝑧AC 𝒫 𝑧𝑧 ∈ dom card)
19 numacn 9940 . . . . . . . 8 (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧AC 𝑦))
2011, 18, 19mpsyl 68 . . . . . . 7 (𝒫 𝑧AC 𝒫 𝑧𝑧AC 𝑦)
2110, 20syl 17 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧AC 𝑦)
2212a1i 11 . . . . . 6 (∀𝑥 𝑥AC 𝑥𝑧 ∈ V)
2321, 222thd 265 . . . . 5 (∀𝑥 𝑥AC 𝑥 → (𝑧AC 𝑦𝑧 ∈ V))
2423eqrdv 2729 . . . 4 (∀𝑥 𝑥AC 𝑥AC 𝑦 = V)
2524alrimiv 1928 . . 3 (∀𝑥 𝑥AC 𝑥 → ∀𝑦AC 𝑦 = V)
26 dfacacn 10033 . . 3 (CHOICE ↔ ∀𝑦AC 𝑦 = V)
2725, 26sylibr 234 . 2 (∀𝑥 𝑥AC 𝑥CHOICE)
285, 27impbii 209 1 (CHOICE ↔ ∀𝑥 𝑥AC 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436  𝒫 cpw 4547   class class class wbr 5089  dom cdm 5614  cdom 8867  csdm 8868  cardccrd 9828  AC wacn 9831  CHOICEwac 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-acn 9835  df-ac 10007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator