Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac13 | Structured version Visualization version GIF version |
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
dfac13 | ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | acacni 9827 | . . . . 5 ⊢ ((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) | |
3 | 2 | elvd 3429 | . . . 4 ⊢ (CHOICE → AC 𝑥 = V) |
4 | 1, 3 | eleqtrrid 2846 | . . 3 ⊢ (CHOICE → 𝑥 ∈ AC 𝑥) |
5 | 4 | alrimiv 1931 | . 2 ⊢ (CHOICE → ∀𝑥 𝑥 ∈ AC 𝑥) |
6 | vpwex 5295 | . . . . . . . 8 ⊢ 𝒫 𝑧 ∈ V | |
7 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧) | |
8 | acneq 9730 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧) | |
9 | 7, 8 | eleq12d 2833 | . . . . . . . 8 ⊢ (𝑥 = 𝒫 𝑧 → (𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧)) |
10 | 6, 9 | spcv 3534 | . . . . . . 7 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧) |
11 | vex 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
12 | vex 3426 | . . . . . . . . . . 11 ⊢ 𝑧 ∈ V | |
13 | 12 | canth2 8866 | . . . . . . . . . 10 ⊢ 𝑧 ≺ 𝒫 𝑧 |
14 | sdomdom 8723 | . . . . . . . . . 10 ⊢ (𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧) | |
15 | acndom2 9741 | . . . . . . . . . 10 ⊢ (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧)) | |
16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧) |
17 | acnnum 9739 | . . . . . . . . 9 ⊢ (𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card) | |
18 | 16, 17 | sylib 217 | . . . . . . . 8 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card) |
19 | numacn 9736 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦)) | |
20 | 11, 18, 19 | mpsyl 68 | . . . . . . 7 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦) |
21 | 10, 20 | syl 17 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦) |
22 | 12 | a1i 11 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V) |
23 | 21, 22 | 2thd 264 | . . . . 5 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → (𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V)) |
24 | 23 | eqrdv 2736 | . . . 4 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V) |
25 | 24 | alrimiv 1931 | . . 3 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → ∀𝑦AC 𝑦 = V) |
26 | dfacacn 9828 | . . 3 ⊢ (CHOICE ↔ ∀𝑦AC 𝑦 = V) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → CHOICE) |
28 | 5, 27 | impbii 208 | 1 ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 class class class wbr 5070 dom cdm 5580 ≼ cdom 8689 ≺ csdm 8690 cardccrd 9624 AC wacn 9627 CHOICEwac 9802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-acn 9631 df-ac 9803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |