| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac13 | Structured version Visualization version GIF version | ||
| Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| dfac13 | ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | acacni 10070 | . . . . 5 ⊢ ((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) | |
| 3 | 2 | elvd 3450 | . . . 4 ⊢ (CHOICE → AC 𝑥 = V) |
| 4 | 1, 3 | eleqtrrid 2835 | . . 3 ⊢ (CHOICE → 𝑥 ∈ AC 𝑥) |
| 5 | 4 | alrimiv 1927 | . 2 ⊢ (CHOICE → ∀𝑥 𝑥 ∈ AC 𝑥) |
| 6 | vpwex 5327 | . . . . . . . 8 ⊢ 𝒫 𝑧 ∈ V | |
| 7 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧) | |
| 8 | acneq 9972 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧) | |
| 9 | 7, 8 | eleq12d 2822 | . . . . . . . 8 ⊢ (𝑥 = 𝒫 𝑧 → (𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧)) |
| 10 | 6, 9 | spcv 3568 | . . . . . . 7 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧) |
| 11 | vex 3448 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 12 | vex 3448 | . . . . . . . . . . 11 ⊢ 𝑧 ∈ V | |
| 13 | 12 | canth2 9071 | . . . . . . . . . 10 ⊢ 𝑧 ≺ 𝒫 𝑧 |
| 14 | sdomdom 8928 | . . . . . . . . . 10 ⊢ (𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧) | |
| 15 | acndom2 9983 | . . . . . . . . . 10 ⊢ (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧)) | |
| 16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧) |
| 17 | acnnum 9981 | . . . . . . . . 9 ⊢ (𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card) | |
| 18 | 16, 17 | sylib 218 | . . . . . . . 8 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card) |
| 19 | numacn 9978 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦)) | |
| 20 | 11, 18, 19 | mpsyl 68 | . . . . . . 7 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦) |
| 21 | 10, 20 | syl 17 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦) |
| 22 | 12 | a1i 11 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V) |
| 23 | 21, 22 | 2thd 265 | . . . . 5 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → (𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V)) |
| 24 | 23 | eqrdv 2727 | . . . 4 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V) |
| 25 | 24 | alrimiv 1927 | . . 3 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → ∀𝑦AC 𝑦 = V) |
| 26 | dfacacn 10071 | . . 3 ⊢ (CHOICE ↔ ∀𝑦AC 𝑦 = V) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → CHOICE) |
| 28 | 5, 27 | impbii 209 | 1 ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 class class class wbr 5102 dom cdm 5631 ≼ cdom 8893 ≺ csdm 8894 cardccrd 9864 AC wacn 9867 CHOICEwac 10044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-acn 9871 df-ac 10045 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |