Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac13 | Structured version Visualization version GIF version |
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
dfac13 | ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3414 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | acacni 9593 | . . . . 5 ⊢ ((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) | |
3 | 2 | elvd 3417 | . . . 4 ⊢ (CHOICE → AC 𝑥 = V) |
4 | 1, 3 | eleqtrrid 2860 | . . 3 ⊢ (CHOICE → 𝑥 ∈ AC 𝑥) |
5 | 4 | alrimiv 1929 | . 2 ⊢ (CHOICE → ∀𝑥 𝑥 ∈ AC 𝑥) |
6 | vpwex 5247 | . . . . . . . 8 ⊢ 𝒫 𝑧 ∈ V | |
7 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧) | |
8 | acneq 9496 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧) | |
9 | 7, 8 | eleq12d 2847 | . . . . . . . 8 ⊢ (𝑥 = 𝒫 𝑧 → (𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧)) |
10 | 6, 9 | spcv 3525 | . . . . . . 7 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧) |
11 | vex 3414 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
12 | vex 3414 | . . . . . . . . . . 11 ⊢ 𝑧 ∈ V | |
13 | 12 | canth2 8692 | . . . . . . . . . 10 ⊢ 𝑧 ≺ 𝒫 𝑧 |
14 | sdomdom 8556 | . . . . . . . . . 10 ⊢ (𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧) | |
15 | acndom2 9507 | . . . . . . . . . 10 ⊢ (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧)) | |
16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧) |
17 | acnnum 9505 | . . . . . . . . 9 ⊢ (𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card) | |
18 | 16, 17 | sylib 221 | . . . . . . . 8 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card) |
19 | numacn 9502 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦)) | |
20 | 11, 18, 19 | mpsyl 68 | . . . . . . 7 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦) |
21 | 10, 20 | syl 17 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦) |
22 | 12 | a1i 11 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V) |
23 | 21, 22 | 2thd 268 | . . . . 5 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → (𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V)) |
24 | 23 | eqrdv 2757 | . . . 4 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V) |
25 | 24 | alrimiv 1929 | . . 3 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → ∀𝑦AC 𝑦 = V) |
26 | dfacacn 9594 | . . 3 ⊢ (CHOICE ↔ ∀𝑦AC 𝑦 = V) | |
27 | 25, 26 | sylibr 237 | . 2 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → CHOICE) |
28 | 5, 27 | impbii 212 | 1 ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1537 = wceq 1539 ∈ wcel 2112 Vcvv 3410 𝒫 cpw 4495 class class class wbr 5033 dom cdm 5525 ≼ cdom 8526 ≺ csdm 8527 cardccrd 9390 AC wacn 9393 CHOICEwac 9568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9394 df-acn 9397 df-ac 9569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |