| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac13 | Structured version Visualization version GIF version | ||
| Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| dfac13 | ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | acacni 10032 | . . . . 5 ⊢ ((CHOICE ∧ 𝑥 ∈ V) → AC 𝑥 = V) | |
| 3 | 2 | elvd 3442 | . . . 4 ⊢ (CHOICE → AC 𝑥 = V) |
| 4 | 1, 3 | eleqtrrid 2838 | . . 3 ⊢ (CHOICE → 𝑥 ∈ AC 𝑥) |
| 5 | 4 | alrimiv 1928 | . 2 ⊢ (CHOICE → ∀𝑥 𝑥 ∈ AC 𝑥) |
| 6 | vpwex 5313 | . . . . . . . 8 ⊢ 𝒫 𝑧 ∈ V | |
| 7 | id 22 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧) | |
| 8 | acneq 9934 | . . . . . . . . 9 ⊢ (𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧) | |
| 9 | 7, 8 | eleq12d 2825 | . . . . . . . 8 ⊢ (𝑥 = 𝒫 𝑧 → (𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧)) |
| 10 | 6, 9 | spcv 3555 | . . . . . . 7 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧) |
| 11 | vex 3440 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 12 | vex 3440 | . . . . . . . . . . 11 ⊢ 𝑧 ∈ V | |
| 13 | 12 | canth2 9043 | . . . . . . . . . 10 ⊢ 𝑧 ≺ 𝒫 𝑧 |
| 14 | sdomdom 8902 | . . . . . . . . . 10 ⊢ (𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧) | |
| 15 | acndom2 9945 | . . . . . . . . . 10 ⊢ (𝑧 ≼ 𝒫 𝑧 → (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧)) | |
| 16 | 13, 14, 15 | mp2b 10 | . . . . . . . . 9 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧) |
| 17 | acnnum 9943 | . . . . . . . . 9 ⊢ (𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card) | |
| 18 | 16, 17 | sylib 218 | . . . . . . . 8 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card) |
| 19 | numacn 9940 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦)) | |
| 20 | 11, 18, 19 | mpsyl 68 | . . . . . . 7 ⊢ (𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦) |
| 21 | 10, 20 | syl 17 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦) |
| 22 | 12 | a1i 11 | . . . . . 6 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V) |
| 23 | 21, 22 | 2thd 265 | . . . . 5 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → (𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V)) |
| 24 | 23 | eqrdv 2729 | . . . 4 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V) |
| 25 | 24 | alrimiv 1928 | . . 3 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → ∀𝑦AC 𝑦 = V) |
| 26 | dfacacn 10033 | . . 3 ⊢ (CHOICE ↔ ∀𝑦AC 𝑦 = V) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (∀𝑥 𝑥 ∈ AC 𝑥 → CHOICE) |
| 28 | 5, 27 | impbii 209 | 1 ⊢ (CHOICE ↔ ∀𝑥 𝑥 ∈ AC 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 class class class wbr 5089 dom cdm 5614 ≼ cdom 8867 ≺ csdm 8868 cardccrd 9828 AC wacn 9831 CHOICEwac 10006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-acn 9835 df-ac 10007 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |