Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr3 Structured version   Visualization version   GIF version

Theorem cdlemftr3 40547
Description: Special case of cdlemf 40545 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝑍   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2734 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 cdlemftr.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle3 39994 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
5 df-rex 3068 . . . 4 (∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
64, 5sylib 218 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
7 cdlemftr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
8 cdlemftr.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemftr.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
107, 1, 2, 3, 8, 9cdlemfnid 40546 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
1110adantrrr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
12 eqcom 2741 . . . . . . . . 9 ((𝑅𝑓) = 𝑢𝑢 = (𝑅𝑓))
1312anbi1i 624 . . . . . . . 8 (((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1413rexbii 3091 . . . . . . 7 (∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1511, 14sylib 218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
16 simprrr 782 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (𝑢𝑋𝑢𝑌𝑢𝑍))
1715, 16jca 511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
1817ex 412 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
1918eximdv 1914 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
206, 19mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
21 rexcom4 3285 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
22 anass 468 . . . . . 6 (((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
2322exbii 1844 . . . . 5 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
24 fvex 6919 . . . . . 6 (𝑅𝑓) ∈ V
25 neeq1 3000 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑋 ↔ (𝑅𝑓) ≠ 𝑋))
26 neeq1 3000 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑌 ↔ (𝑅𝑓) ≠ 𝑌))
27 neeq1 3000 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑍 ↔ (𝑅𝑓) ≠ 𝑍))
2825, 26, 273anbi123d 1435 . . . . . . 7 (𝑢 = (𝑅𝑓) → ((𝑢𝑋𝑢𝑌𝑢𝑍) ↔ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
2928anbi2d 630 . . . . . 6 (𝑢 = (𝑅𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍))))
3024, 29ceqsexv 3529 . . . . 5 (∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3123, 30bitri 275 . . . 4 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3231rexbii 3091 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
33 r19.41v 3186 . . . 4 (∃𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3433exbii 1844 . . 3 (∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3521, 32, 343bitr3ri 302 . 2 (∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3620, 35sylib 218 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wrex 3067   class class class wbr 5147   I cid 5581  cres 5690  cfv 6562  Basecbs 17244  lecple 17304  Atomscatm 39244  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  trLctrl 40140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-undef 8296  df-map 8866  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141
This theorem is referenced by:  cdlemftr2  40548  cdlemk26-3  40888  cdlemk11t  40928
  Copyright terms: Public domain W3C validator