Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr3 Structured version   Visualization version   GIF version

Theorem cdlemftr3 40603
Description: Special case of cdlemf 40601 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝑍   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2731 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 cdlemftr.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle3 40050 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
5 df-rex 3057 . . . 4 (∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
64, 5sylib 218 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
7 cdlemftr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
8 cdlemftr.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemftr.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
107, 1, 2, 3, 8, 9cdlemfnid 40602 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
1110adantrrr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
12 eqcom 2738 . . . . . . . . 9 ((𝑅𝑓) = 𝑢𝑢 = (𝑅𝑓))
1312anbi1i 624 . . . . . . . 8 (((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1413rexbii 3079 . . . . . . 7 (∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1511, 14sylib 218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
16 simprrr 781 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (𝑢𝑋𝑢𝑌𝑢𝑍))
1715, 16jca 511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
1817ex 412 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
1918eximdv 1918 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
206, 19mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
21 rexcom4 3259 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
22 anass 468 . . . . . 6 (((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
2322exbii 1849 . . . . 5 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
24 fvex 6835 . . . . . 6 (𝑅𝑓) ∈ V
25 neeq1 2990 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑋 ↔ (𝑅𝑓) ≠ 𝑋))
26 neeq1 2990 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑌 ↔ (𝑅𝑓) ≠ 𝑌))
27 neeq1 2990 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑍 ↔ (𝑅𝑓) ≠ 𝑍))
2825, 26, 273anbi123d 1438 . . . . . . 7 (𝑢 = (𝑅𝑓) → ((𝑢𝑋𝑢𝑌𝑢𝑍) ↔ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
2928anbi2d 630 . . . . . 6 (𝑢 = (𝑅𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍))))
3024, 29ceqsexv 3487 . . . . 5 (∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3123, 30bitri 275 . . . 4 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3231rexbii 3079 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
33 r19.41v 3162 . . . 4 (∃𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3433exbii 1849 . . 3 (∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3521, 32, 343bitr3ri 302 . 2 (∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3620, 35sylib 218 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091   I cid 5510  cres 5618  cfv 6481  Basecbs 17117  lecple 17165  Atomscatm 39301  HLchlt 39388  LHypclh 40022  LTrncltrn 40139  trLctrl 40196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197
This theorem is referenced by:  cdlemftr2  40604  cdlemk26-3  40944  cdlemk11t  40984
  Copyright terms: Public domain W3C validator