Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr3 Structured version   Visualization version   GIF version

Theorem cdlemftr3 37695
Description: Special case of cdlemf 37693 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝑍   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2821 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 cdlemftr.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle3 37142 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
5 df-rex 3144 . . . 4 (∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
64, 5sylib 220 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
7 cdlemftr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
8 cdlemftr.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemftr.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
107, 1, 2, 3, 8, 9cdlemfnid 37694 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
1110adantrrr 723 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
12 eqcom 2828 . . . . . . . . 9 ((𝑅𝑓) = 𝑢𝑢 = (𝑅𝑓))
1312anbi1i 625 . . . . . . . 8 (((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1413rexbii 3247 . . . . . . 7 (∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1511, 14sylib 220 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
16 simprrr 780 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (𝑢𝑋𝑢𝑌𝑢𝑍))
1715, 16jca 514 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
1817ex 415 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
1918eximdv 1914 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
206, 19mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
21 rexcom4 3249 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
22 anass 471 . . . . . 6 (((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
2322exbii 1844 . . . . 5 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
24 fvex 6677 . . . . . 6 (𝑅𝑓) ∈ V
25 neeq1 3078 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑋 ↔ (𝑅𝑓) ≠ 𝑋))
26 neeq1 3078 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑌 ↔ (𝑅𝑓) ≠ 𝑌))
27 neeq1 3078 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑍 ↔ (𝑅𝑓) ≠ 𝑍))
2825, 26, 273anbi123d 1432 . . . . . . 7 (𝑢 = (𝑅𝑓) → ((𝑢𝑋𝑢𝑌𝑢𝑍) ↔ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
2928anbi2d 630 . . . . . 6 (𝑢 = (𝑅𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍))))
3024, 29ceqsexv 3541 . . . . 5 (∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3123, 30bitri 277 . . . 4 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3231rexbii 3247 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
33 r19.41v 3347 . . . 4 (∃𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3433exbii 1844 . . 3 (∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3521, 32, 343bitr3ri 304 . 2 (∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3620, 35sylib 220 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wrex 3139   class class class wbr 5058   I cid 5453  cres 5551  cfv 6349  Basecbs 16477  lecple 16566  Atomscatm 36393  HLchlt 36480  LHypclh 37114  LTrncltrn 37231  trLctrl 37288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-undef 7933  df-map 8402  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289
This theorem is referenced by:  cdlemftr2  37696  cdlemk26-3  38036  cdlemk11t  38076
  Copyright terms: Public domain W3C validator