Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr3 Structured version   Visualization version   GIF version

Theorem cdlemftr3 38506
Description: Special case of cdlemf 38504 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝑍   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2738 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 cdlemftr.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle3 37953 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
5 df-rex 3069 . . . 4 (∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
64, 5sylib 217 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
7 cdlemftr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
8 cdlemftr.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemftr.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
107, 1, 2, 3, 8, 9cdlemfnid 38505 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
1110adantrrr 721 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
12 eqcom 2745 . . . . . . . . 9 ((𝑅𝑓) = 𝑢𝑢 = (𝑅𝑓))
1312anbi1i 623 . . . . . . . 8 (((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1413rexbii 3177 . . . . . . 7 (∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1511, 14sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
16 simprrr 778 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (𝑢𝑋𝑢𝑌𝑢𝑍))
1715, 16jca 511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
1817ex 412 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
1918eximdv 1921 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
206, 19mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
21 rexcom4 3179 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
22 anass 468 . . . . . 6 (((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
2322exbii 1851 . . . . 5 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
24 fvex 6769 . . . . . 6 (𝑅𝑓) ∈ V
25 neeq1 3005 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑋 ↔ (𝑅𝑓) ≠ 𝑋))
26 neeq1 3005 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑌 ↔ (𝑅𝑓) ≠ 𝑌))
27 neeq1 3005 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑍 ↔ (𝑅𝑓) ≠ 𝑍))
2825, 26, 273anbi123d 1434 . . . . . . 7 (𝑢 = (𝑅𝑓) → ((𝑢𝑋𝑢𝑌𝑢𝑍) ↔ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
2928anbi2d 628 . . . . . 6 (𝑢 = (𝑅𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍))))
3024, 29ceqsexv 3469 . . . . 5 (∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3123, 30bitri 274 . . . 4 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3231rexbii 3177 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
33 r19.41v 3273 . . . 4 (∃𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3433exbii 1851 . . 3 (∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3521, 32, 343bitr3ri 301 . 2 (∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3620, 35sylib 217 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070   I cid 5479  cres 5582  cfv 6418  Basecbs 16840  lecple 16895  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100
This theorem is referenced by:  cdlemftr2  38507  cdlemk26-3  38847  cdlemk11t  38887
  Copyright terms: Public domain W3C validator