Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr3 Structured version   Visualization version   GIF version

Theorem cdlemftr3 38202
Description: Special case of cdlemf 38200 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b 𝐵 = (Base‘𝐾)
cdlemftr.h 𝐻 = (LHyp‘𝐾)
cdlemftr.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemftr.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemftr3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝑍   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cdlemftr3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
2 eqid 2738 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 cdlemftr.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle3 37649 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
5 df-rex 3059 . . . 4 (∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
64, 5sylib 221 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
7 cdlemftr.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
8 cdlemftr.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemftr.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
107, 1, 2, 3, 8, 9cdlemfnid 38201 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
1110adantrrr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)))
12 eqcom 2745 . . . . . . . . 9 ((𝑅𝑓) = 𝑢𝑢 = (𝑅𝑓))
1312anbi1i 627 . . . . . . . 8 (((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1413rexbii 3161 . . . . . . 7 (∃𝑓𝑇 ((𝑅𝑓) = 𝑢𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
1511, 14sylib 221 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → ∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)))
16 simprrr 782 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (𝑢𝑋𝑢𝑌𝑢𝑍))
1715, 16jca 515 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
1817ex 416 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
1918eximdv 1924 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
206, 19mpd 15 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
21 rexcom4 3163 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
22 anass 472 . . . . . 6 (((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
2322exbii 1854 . . . . 5 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))))
24 fvex 6687 . . . . . 6 (𝑅𝑓) ∈ V
25 neeq1 2996 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑋 ↔ (𝑅𝑓) ≠ 𝑋))
26 neeq1 2996 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑌 ↔ (𝑅𝑓) ≠ 𝑌))
27 neeq1 2996 . . . . . . . 8 (𝑢 = (𝑅𝑓) → (𝑢𝑍 ↔ (𝑅𝑓) ≠ 𝑍))
2825, 26, 273anbi123d 1437 . . . . . . 7 (𝑢 = (𝑅𝑓) → ((𝑢𝑋𝑢𝑌𝑢𝑍) ↔ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
2928anbi2d 632 . . . . . 6 (𝑢 = (𝑅𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍))))
3024, 29ceqsexv 3445 . . . . 5 (∃𝑢(𝑢 = (𝑅𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3123, 30bitri 278 . . . 4 (∃𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3231rexbii 3161 . . 3 (∃𝑓𝑇𝑢((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
33 r19.41v 3251 . . . 4 (∃𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ (∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3433exbii 1854 . . 3 (∃𝑢𝑓𝑇 ((𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)))
3521, 32, 343bitr3ri 305 . 2 (∃𝑢(∃𝑓𝑇 (𝑢 = (𝑅𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢𝑋𝑢𝑌𝑢𝑍)) ↔ ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
3620, 35sylib 221 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝑓) ≠ 𝑋 ∧ (𝑅𝑓) ≠ 𝑌 ∧ (𝑅𝑓) ≠ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wne 2934  wrex 3054   class class class wbr 5030   I cid 5428  cres 5527  cfv 6339  Basecbs 16586  lecple 16675  Atomscatm 36900  HLchlt 36987  LHypclh 37621  LTrncltrn 37738  trLctrl 37795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-riotaBAD 36590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-undef 7968  df-map 8439  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625  df-laut 37626  df-ldil 37741  df-ltrn 37742  df-trl 37796
This theorem is referenced by:  cdlemftr2  38203  cdlemk26-3  38543  cdlemk11t  38583
  Copyright terms: Public domain W3C validator