Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
2 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
3 | | cdlemftr.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 1, 2, 3 | lhpexle3 37649 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
5 | | df-rex 3059 |
. . . 4
⊢
(∃𝑢 ∈
(Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
6 | 4, 5 | sylib 221 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
7 | | cdlemftr.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
8 | | cdlemftr.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
9 | | cdlemftr.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
10 | 7, 1, 2, 3, 8, 9 | cdlemfnid 38201 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
11 | 10 | adantrrr 725 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
12 | | eqcom 2745 |
. . . . . . . . 9
⊢ ((𝑅‘𝑓) = 𝑢 ↔ 𝑢 = (𝑅‘𝑓)) |
13 | 12 | anbi1i 627 |
. . . . . . . 8
⊢ (((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
14 | 13 | rexbii 3161 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝑇 ((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
15 | 11, 14 | sylib 221 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → ∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
16 | | simprrr 782 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) |
17 | 15, 16 | jca 515 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → (∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
18 | 17 | ex 416 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) → (∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
19 | 18 | eximdv 1924 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) → ∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
20 | 6, 19 | mpd 15 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
21 | | rexcom4 3163 |
. . 3
⊢
(∃𝑓 ∈
𝑇 ∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢∃𝑓 ∈ 𝑇 ((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
22 | | anass 472 |
. . . . . 6
⊢ (((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (𝑢 = (𝑅‘𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
23 | 22 | exbii 1854 |
. . . . 5
⊢
(∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢(𝑢 = (𝑅‘𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
24 | | fvex 6687 |
. . . . . 6
⊢ (𝑅‘𝑓) ∈ V |
25 | | neeq1 2996 |
. . . . . . . 8
⊢ (𝑢 = (𝑅‘𝑓) → (𝑢 ≠ 𝑋 ↔ (𝑅‘𝑓) ≠ 𝑋)) |
26 | | neeq1 2996 |
. . . . . . . 8
⊢ (𝑢 = (𝑅‘𝑓) → (𝑢 ≠ 𝑌 ↔ (𝑅‘𝑓) ≠ 𝑌)) |
27 | | neeq1 2996 |
. . . . . . . 8
⊢ (𝑢 = (𝑅‘𝑓) → (𝑢 ≠ 𝑍 ↔ (𝑅‘𝑓) ≠ 𝑍)) |
28 | 25, 26, 27 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑢 = (𝑅‘𝑓) → ((𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍) ↔ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
29 | 28 | anbi2d 632 |
. . . . . 6
⊢ (𝑢 = (𝑅‘𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍)))) |
30 | 24, 29 | ceqsexv 3445 |
. . . . 5
⊢
(∃𝑢(𝑢 = (𝑅‘𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
31 | 23, 30 | bitri 278 |
. . . 4
⊢
(∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
32 | 31 | rexbii 3161 |
. . 3
⊢
(∃𝑓 ∈
𝑇 ∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
33 | | r19.41v 3251 |
. . . 4
⊢
(∃𝑓 ∈
𝑇 ((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
34 | 33 | exbii 1854 |
. . 3
⊢
(∃𝑢∃𝑓 ∈ 𝑇 ((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
35 | 21, 32, 34 | 3bitr3ri 305 |
. 2
⊢
(∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
36 | 20, 35 | sylib 221 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |