| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
| 2 | | eqid 2737 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 3 | | cdlemftr.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 4 | 1, 2, 3 | lhpexle3 40014 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
| 5 | | df-rex 3071 |
. . . 4
⊢
(∃𝑢 ∈
(Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
| 6 | 4, 5 | sylib 218 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
| 7 | | cdlemftr.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
| 8 | | cdlemftr.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 9 | | cdlemftr.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 10 | 7, 1, 2, 3, 8, 9 | cdlemfnid 40566 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| 11 | 10 | adantrrr 725 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → ∃𝑓 ∈ 𝑇 ((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| 12 | | eqcom 2744 |
. . . . . . . . 9
⊢ ((𝑅‘𝑓) = 𝑢 ↔ 𝑢 = (𝑅‘𝑓)) |
| 13 | 12 | anbi1i 624 |
. . . . . . . 8
⊢ (((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵)) ↔ (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| 14 | 13 | rexbii 3094 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝑇 ((𝑅‘𝑓) = 𝑢 ∧ 𝑓 ≠ ( I ↾ 𝐵)) ↔ ∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| 15 | 11, 14 | sylib 218 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → ∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵))) |
| 16 | | simprrr 782 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) |
| 17 | 15, 16 | jca 511 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) → (∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
| 18 | 17 | ex 412 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) → (∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
| 19 | 18 | eximdv 1917 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑢(𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) → ∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
| 20 | 6, 19 | mpd 15 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
| 21 | | rexcom4 3288 |
. . 3
⊢
(∃𝑓 ∈
𝑇 ∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢∃𝑓 ∈ 𝑇 ((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
| 22 | | anass 468 |
. . . . . 6
⊢ (((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (𝑢 = (𝑅‘𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
| 23 | 22 | exbii 1848 |
. . . . 5
⊢
(∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢(𝑢 = (𝑅‘𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)))) |
| 24 | | fvex 6919 |
. . . . . 6
⊢ (𝑅‘𝑓) ∈ V |
| 25 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑢 = (𝑅‘𝑓) → (𝑢 ≠ 𝑋 ↔ (𝑅‘𝑓) ≠ 𝑋)) |
| 26 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑢 = (𝑅‘𝑓) → (𝑢 ≠ 𝑌 ↔ (𝑅‘𝑓) ≠ 𝑌)) |
| 27 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑢 = (𝑅‘𝑓) → (𝑢 ≠ 𝑍 ↔ (𝑅‘𝑓) ≠ 𝑍)) |
| 28 | 25, 26, 27 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑢 = (𝑅‘𝑓) → ((𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍) ↔ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
| 29 | 28 | anbi2d 630 |
. . . . . 6
⊢ (𝑢 = (𝑅‘𝑓) → ((𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍)))) |
| 30 | 24, 29 | ceqsexv 3532 |
. . . . 5
⊢
(∃𝑢(𝑢 = (𝑅‘𝑓) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
| 31 | 23, 30 | bitri 275 |
. . . 4
⊢
(∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
| 32 | 31 | rexbii 3094 |
. . 3
⊢
(∃𝑓 ∈
𝑇 ∃𝑢((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
| 33 | | r19.41v 3189 |
. . . 4
⊢
(∃𝑓 ∈
𝑇 ((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ (∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
| 34 | 33 | exbii 1848 |
. . 3
⊢
(∃𝑢∃𝑓 ∈ 𝑇 ((𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍))) |
| 35 | 21, 32, 34 | 3bitr3ri 302 |
. 2
⊢
(∃𝑢(∃𝑓 ∈ 𝑇 (𝑢 = (𝑅‘𝑓) ∧ 𝑓 ≠ ( I ↾ 𝐵)) ∧ (𝑢 ≠ 𝑋 ∧ 𝑢 ≠ 𝑌 ∧ 𝑢 ≠ 𝑍)) ↔ ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |
| 36 | 20, 35 | sylib 218 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑍))) |