| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvmliftmoi.m | . . 3
⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) | 
| 2 |  | cvmliftmo.y | . . . 4
⊢ 𝑌 = ∪
𝐾 | 
| 3 |  | cvmliftmo.b | . . . 4
⊢ 𝐵 = ∪
𝐶 | 
| 4 | 2, 3 | cnf 23255 | . . 3
⊢ (𝑀 ∈ (𝐾 Cn 𝐶) → 𝑀:𝑌⟶𝐵) | 
| 5 |  | ffn 6735 | . . 3
⊢ (𝑀:𝑌⟶𝐵 → 𝑀 Fn 𝑌) | 
| 6 | 1, 4, 5 | 3syl 18 | . 2
⊢ (𝜑 → 𝑀 Fn 𝑌) | 
| 7 |  | cvmliftmoi.n | . . 3
⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) | 
| 8 | 2, 3 | cnf 23255 | . . 3
⊢ (𝑁 ∈ (𝐾 Cn 𝐶) → 𝑁:𝑌⟶𝐵) | 
| 9 |  | ffn 6735 | . . 3
⊢ (𝑁:𝑌⟶𝐵 → 𝑁 Fn 𝑌) | 
| 10 | 7, 8, 9 | 3syl 18 | . 2
⊢ (𝜑 → 𝑁 Fn 𝑌) | 
| 11 |  | cvmliftmo.k | . . . . . 6
⊢ (𝜑 → 𝐾 ∈ Conn) | 
| 12 |  | inss1 4236 | . . . . . . 7
⊢ (𝐾 ∩ (Clsd‘𝐾)) ⊆ 𝐾 | 
| 13 |  | cvmliftmo.f | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 14 | 13 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 15 | 1, 4 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:𝑌⟶𝐵) | 
| 16 | 15 | ffvelcdmda 7103 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑀‘𝑥) ∈ 𝐵) | 
| 17 |  | cvmcn 35268 | . . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) | 
| 18 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 19 | 3, 18 | cnf 23255 | . . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) | 
| 20 | 13, 17, 19 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝐵⟶∪ 𝐽) | 
| 21 | 20 | ffvelcdmda 7103 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑀‘𝑥) ∈ 𝐵) → (𝐹‘(𝑀‘𝑥)) ∈ ∪ 𝐽) | 
| 22 | 16, 21 | syldan 591 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(𝑀‘𝑥)) ∈ ∪ 𝐽) | 
| 23 |  | cvmliftmolem.1 | . . . . . . . . . . . 12
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | 
| 24 | 23, 18 | cvmcov 35269 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐹‘(𝑀‘𝑥)) ∈ ∪ 𝐽) → ∃𝑎 ∈ 𝐽 ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅)) | 
| 25 | 14, 22, 24 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑎 ∈ 𝐽 ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅)) | 
| 26 |  | n0 4352 | . . . . . . . . . . . . . 14
⊢ ((𝑆‘𝑎) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆‘𝑎)) | 
| 27 |  | cvmliftmo.l | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Conn) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝐾 ∈ 𝑛-Locally
Conn) | 
| 29 | 1 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑀 ∈ (𝐾 Cn 𝐶)) | 
| 30 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑡 ∈ (𝑆‘𝑎)) | 
| 31 | 23 | cvmsss 35273 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ (𝑆‘𝑎) → 𝑡 ⊆ 𝐶) | 
| 32 | 30, 31 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑡 ⊆ 𝐶) | 
| 33 | 13 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 34 | 15 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑀:𝑌⟶𝐵) | 
| 35 |  | simprll 778 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑥 ∈ 𝑌) | 
| 36 | 34, 35 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝑀‘𝑥) ∈ 𝐵) | 
| 37 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) | 
| 38 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(℩𝑏
∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) = (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) | 
| 39 | 23, 3, 38 | cvmsiota 35283 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑡 ∈ (𝑆‘𝑎) ∧ (𝑀‘𝑥) ∈ 𝐵 ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎)) → ((℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) | 
| 40 | 33, 30, 36, 37, 39 | syl13anc 1373 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → ((℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) | 
| 41 | 40 | simpld 494 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡) | 
| 42 | 32, 41 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝐶) | 
| 43 |  | cnima 23274 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ (𝐾 Cn 𝐶) ∧ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝐶) → (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∈ 𝐾) | 
| 44 | 29, 42, 43 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∈ 𝐾) | 
| 45 | 40 | simprd 495 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) | 
| 46 |  | elpreima 7077 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 Fn 𝑌 → (𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ↔ (𝑥 ∈ 𝑌 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)))) | 
| 47 | 34, 5, 46 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ↔ (𝑥 ∈ 𝑌 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)))) | 
| 48 | 35, 45, 47 | mpbir2and 713 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) | 
| 49 |  | nlly2i 23485 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ 𝑛-Locally Conn
∧ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∈ 𝐾 ∧ 𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) → ∃𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) | 
| 50 | 28, 44, 48, 49 | syl3anc 1372 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → ∃𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) | 
| 51 |  | simprr1 1221 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → 𝑥 ∈ 𝑦) | 
| 52 |  | cvmliftmo.o | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑂 ∈ 𝑌) | 
| 53 |  | cvmliftmoi.g | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) | 
| 54 |  | cvmliftmoi.p | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) | 
| 55 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦)) → 𝑡 ∈ (𝑆‘𝑎)) | 
| 56 | 55 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑡 ∈ (𝑆‘𝑎)) | 
| 57 | 41 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡) | 
| 58 |  | simplll 774 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦) → 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) | 
| 59 | 58 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) | 
| 60 | 59 | elpwid 4608 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑠 ⊆ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) | 
| 61 |  | simplr3 1217 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦) → (𝐾 ↾t 𝑠) ∈ Conn) | 
| 62 | 61 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝐾 ↾t 𝑠) ∈ Conn) | 
| 63 |  | simplr2 1216 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦) → 𝑦 ⊆ 𝑠) | 
| 64 | 63 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑦 ⊆ 𝑠) | 
| 65 |  | simprr1 1221 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → 𝑥 ∈ 𝑦) | 
| 66 | 65 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)))) → 𝑥 ∈ 𝑦) | 
| 67 | 66 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑥 ∈ 𝑦) | 
| 68 | 64, 67 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑥 ∈ 𝑠) | 
| 69 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑧 ∈ 𝑦) | 
| 70 | 64, 69 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑧 ∈ 𝑠) | 
| 71 | 37 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) | 
| 72 | 3, 2, 13, 11, 27, 52, 1, 7, 53, 54, 23, 56, 57, 60, 62, 68, 68, 70, 71 | cvmliftmolem1 35287 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) → 𝑧 ∈ dom (𝑀 ∩ 𝑁))) | 
| 73 | 3, 2, 13, 11, 27, 52, 1, 7, 53, 54, 23, 56, 57, 60, 62, 68, 70, 68, 71 | cvmliftmolem1 35287 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝑧 ∈ dom (𝑀 ∩ 𝑁) → 𝑥 ∈ dom (𝑀 ∩ 𝑁))) | 
| 74 | 72, 73 | impbid 212 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) | 
| 75 | 74 | anassrs 467 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦)) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) | 
| 76 | 75 | anassrs 467 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) ∧ 𝑧 ∈ 𝑦) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) | 
| 77 | 76 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) | 
| 78 | 51, 77 | jca 511 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) | 
| 79 | 78 | expr 456 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ (𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 80 | 79 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) ∧ 𝑦 ∈ 𝐾) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 81 | 80 | reximdva 3167 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) → (∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 82 | 81 | rexlimdva 3154 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (∃𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 83 | 50, 82 | mpd 15 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) | 
| 84 | 83 | anassrs 467 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) | 
| 85 | 84 | expr 456 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) → (𝑡 ∈ (𝑆‘𝑎) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 86 | 85 | exlimdv 1932 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) → (∃𝑡 𝑡 ∈ (𝑆‘𝑎) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 87 | 26, 86 | biimtrid 242 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) → ((𝑆‘𝑎) ≠ ∅ → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 88 | 87 | expimpd 453 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) → (((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 89 | 88 | anassrs 467 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ 𝑎 ∈ 𝐽) → (((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 90 | 89 | rexlimdva 3154 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (∃𝑎 ∈ 𝐽 ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 91 | 25, 90 | mpd 15 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) | 
| 92 | 91 | ralrimiva 3145 | . . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) | 
| 93 |  | conntop 23426 | . . . . . . . . . 10
⊢ (𝐾 ∈ Conn → 𝐾 ∈ Top) | 
| 94 | 11, 93 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 95 |  | fndmin 7064 | . . . . . . . . . . 11
⊢ ((𝑀 Fn 𝑌 ∧ 𝑁 Fn 𝑌) → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) | 
| 96 | 6, 10, 95 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) | 
| 97 |  | ssrab2 4079 | . . . . . . . . . 10
⊢ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ⊆ 𝑌 | 
| 98 | 96, 97 | eqsstrdi 4027 | . . . . . . . . 9
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ⊆ 𝑌) | 
| 99 | 2 | isclo 23096 | . . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ dom (𝑀 ∩ 𝑁) ⊆ 𝑌) → (dom (𝑀 ∩ 𝑁) ∈ (𝐾 ∩ (Clsd‘𝐾)) ↔ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 100 | 94, 98, 99 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → (dom (𝑀 ∩ 𝑁) ∈ (𝐾 ∩ (Clsd‘𝐾)) ↔ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) | 
| 101 | 92, 100 | mpbird 257 | . . . . . . 7
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ∈ (𝐾 ∩ (Clsd‘𝐾))) | 
| 102 | 12, 101 | sselid 3980 | . . . . . 6
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ∈ 𝐾) | 
| 103 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑂 → (𝑀‘𝑥) = (𝑀‘𝑂)) | 
| 104 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑂 → (𝑁‘𝑥) = (𝑁‘𝑂)) | 
| 105 | 103, 104 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (𝑥 = 𝑂 → ((𝑀‘𝑥) = (𝑁‘𝑥) ↔ (𝑀‘𝑂) = (𝑁‘𝑂))) | 
| 106 | 105 | elrab 3691 | . . . . . . . . 9
⊢ (𝑂 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ (𝑂 ∈ 𝑌 ∧ (𝑀‘𝑂) = (𝑁‘𝑂))) | 
| 107 | 52, 54, 106 | sylanbrc 583 | . . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) | 
| 108 | 107, 96 | eleqtrrd 2843 | . . . . . . 7
⊢ (𝜑 → 𝑂 ∈ dom (𝑀 ∩ 𝑁)) | 
| 109 | 108 | ne0d 4341 | . . . . . 6
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ≠ ∅) | 
| 110 |  | inss2 4237 | . . . . . . 7
⊢ (𝐾 ∩ (Clsd‘𝐾)) ⊆ (Clsd‘𝐾) | 
| 111 | 110, 101 | sselid 3980 | . . . . . 6
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ∈ (Clsd‘𝐾)) | 
| 112 | 2, 11, 102, 109, 111 | connclo 23424 | . . . . 5
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) = 𝑌) | 
| 113 | 112, 96 | eqtr3d 2778 | . . . 4
⊢ (𝜑 → 𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) | 
| 114 |  | rabid2 3469 | . . . 4
⊢ (𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ ∀𝑥 ∈ 𝑌 (𝑀‘𝑥) = (𝑁‘𝑥)) | 
| 115 | 113, 114 | sylib 218 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑌 (𝑀‘𝑥) = (𝑁‘𝑥)) | 
| 116 | 115 | r19.21bi 3250 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑀‘𝑥) = (𝑁‘𝑥)) | 
| 117 | 6, 10, 116 | eqfnfvd 7053 | 1
⊢ (𝜑 → 𝑀 = 𝑁) |