Step | Hyp | Ref
| Expression |
1 | | cvmliftmoi.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) |
2 | | cvmliftmo.y |
. . . 4
⊢ 𝑌 = ∪
𝐾 |
3 | | cvmliftmo.b |
. . . 4
⊢ 𝐵 = ∪
𝐶 |
4 | 2, 3 | cnf 22305 |
. . 3
⊢ (𝑀 ∈ (𝐾 Cn 𝐶) → 𝑀:𝑌⟶𝐵) |
5 | | ffn 6584 |
. . 3
⊢ (𝑀:𝑌⟶𝐵 → 𝑀 Fn 𝑌) |
6 | 1, 4, 5 | 3syl 18 |
. 2
⊢ (𝜑 → 𝑀 Fn 𝑌) |
7 | | cvmliftmoi.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) |
8 | 2, 3 | cnf 22305 |
. . 3
⊢ (𝑁 ∈ (𝐾 Cn 𝐶) → 𝑁:𝑌⟶𝐵) |
9 | | ffn 6584 |
. . 3
⊢ (𝑁:𝑌⟶𝐵 → 𝑁 Fn 𝑌) |
10 | 7, 8, 9 | 3syl 18 |
. 2
⊢ (𝜑 → 𝑁 Fn 𝑌) |
11 | | cvmliftmo.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Conn) |
12 | | inss1 4159 |
. . . . . . 7
⊢ (𝐾 ∩ (Clsd‘𝐾)) ⊆ 𝐾 |
13 | | cvmliftmo.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
15 | 1, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:𝑌⟶𝐵) |
16 | 15 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑀‘𝑥) ∈ 𝐵) |
17 | | cvmcn 33124 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
18 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝐽 =
∪ 𝐽 |
19 | 3, 18 | cnf 22305 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
20 | 13, 17, 19 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝐵⟶∪ 𝐽) |
21 | 20 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑀‘𝑥) ∈ 𝐵) → (𝐹‘(𝑀‘𝑥)) ∈ ∪ 𝐽) |
22 | 16, 21 | syldan 590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(𝑀‘𝑥)) ∈ ∪ 𝐽) |
23 | | cvmliftmolem.1 |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
24 | 23, 18 | cvmcov 33125 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐹‘(𝑀‘𝑥)) ∈ ∪ 𝐽) → ∃𝑎 ∈ 𝐽 ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅)) |
25 | 14, 22, 24 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑎 ∈ 𝐽 ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅)) |
26 | | n0 4277 |
. . . . . . . . . . . . . 14
⊢ ((𝑆‘𝑎) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆‘𝑎)) |
27 | | cvmliftmo.l |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Conn) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝐾 ∈ 𝑛-Locally
Conn) |
29 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑀 ∈ (𝐾 Cn 𝐶)) |
30 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑡 ∈ (𝑆‘𝑎)) |
31 | 23 | cvmsss 33129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ (𝑆‘𝑎) → 𝑡 ⊆ 𝐶) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑡 ⊆ 𝐶) |
33 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
34 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑀:𝑌⟶𝐵) |
35 | | simprll 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑥 ∈ 𝑌) |
36 | 34, 35 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝑀‘𝑥) ∈ 𝐵) |
37 | | simprrl 777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) |
38 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(℩𝑏
∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) = (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) |
39 | 23, 3, 38 | cvmsiota 33139 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑡 ∈ (𝑆‘𝑎) ∧ (𝑀‘𝑥) ∈ 𝐵 ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎)) → ((℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) |
40 | 33, 30, 36, 37, 39 | syl13anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → ((℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) |
41 | 40 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡) |
42 | 32, 41 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝐶) |
43 | | cnima 22324 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ (𝐾 Cn 𝐶) ∧ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝐶) → (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∈ 𝐾) |
44 | 29, 42, 43 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∈ 𝐾) |
45 | 40 | simprd 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) |
46 | | elpreima 6917 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 Fn 𝑌 → (𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ↔ (𝑥 ∈ 𝑌 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)))) |
47 | 34, 5, 46 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ↔ (𝑥 ∈ 𝑌 ∧ (𝑀‘𝑥) ∈ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)))) |
48 | 35, 45, 47 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → 𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) |
49 | | nlly2i 22535 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ 𝑛-Locally Conn
∧ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∈ 𝐾 ∧ 𝑥 ∈ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) → ∃𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) |
50 | 28, 44, 48, 49 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → ∃𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) |
51 | | simprr1 1219 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → 𝑥 ∈ 𝑦) |
52 | | cvmliftmo.o |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
53 | | cvmliftmoi.g |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
54 | | cvmliftmoi.p |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) |
55 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦)) → 𝑡 ∈ (𝑆‘𝑎)) |
56 | 55 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑡 ∈ (𝑆‘𝑎)) |
57 | 41 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏) ∈ 𝑡) |
58 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦) → 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) |
59 | 58 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) |
60 | 59 | elpwid 4541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑠 ⊆ (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) |
61 | | simplr3 1215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦) → (𝐾 ↾t 𝑠) ∈ Conn) |
62 | 61 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝐾 ↾t 𝑠) ∈ Conn) |
63 | | simplr2 1214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦) → 𝑦 ⊆ 𝑠) |
64 | 63 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑦 ⊆ 𝑠) |
65 | | simprr1 1219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → 𝑥 ∈ 𝑦) |
66 | 65 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)))) → 𝑥 ∈ 𝑦) |
67 | 66 | adantrrr 721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑥 ∈ 𝑦) |
68 | 64, 67 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑥 ∈ 𝑠) |
69 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑧 ∈ 𝑦) |
70 | 64, 69 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → 𝑧 ∈ 𝑠) |
71 | 37 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) |
72 | 3, 2, 13, 11, 27, 52, 1, 7, 53, 54, 23, 56, 57, 60, 62, 68, 68, 70, 71 | cvmliftmolem1 33143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) → 𝑧 ∈ dom (𝑀 ∩ 𝑁))) |
73 | 3, 2, 13, 11, 27, 52, 1, 7, 53, 54, 23, 56, 57, 60, 62, 68, 70, 68, 71 | cvmliftmolem1 33143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝑧 ∈ dom (𝑀 ∩ 𝑁) → 𝑥 ∈ dom (𝑀 ∩ 𝑁))) |
74 | 72, 73 | impbid 211 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦))) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) |
75 | 74 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ (((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn)) ∧ 𝑧 ∈ 𝑦)) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) |
76 | 75 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) ∧ 𝑧 ∈ 𝑦) → (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) |
77 | 76 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))) |
78 | 51, 77 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ ((𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn))) → (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) |
79 | 78 | expr 456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ (𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏)) ∧ 𝑦 ∈ 𝐾)) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
80 | 79 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) ∧ 𝑦 ∈ 𝐾) → ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
81 | 80 | reximdva 3202 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) ∧ 𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))) → (∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
82 | 81 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → (∃𝑠 ∈ 𝒫 (◡𝑀 “ (℩𝑏 ∈ 𝑡 (𝑀‘𝑥) ∈ 𝑏))∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑠 ∧ (𝐾 ↾t 𝑠) ∈ Conn) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
83 | 50, 82 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎)))) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) |
84 | 83 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) |
85 | 84 | expr 456 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) → (𝑡 ∈ (𝑆‘𝑎) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
86 | 85 | exlimdv 1937 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) → (∃𝑡 𝑡 ∈ (𝑆‘𝑎) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
87 | 26, 86 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) ∧ (𝐹‘(𝑀‘𝑥)) ∈ 𝑎) → ((𝑆‘𝑎) ≠ ∅ → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
88 | 87 | expimpd 453 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑎 ∈ 𝐽)) → (((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
89 | 88 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ 𝑎 ∈ 𝐽) → (((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
90 | 89 | rexlimdva 3212 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (∃𝑎 ∈ 𝐽 ((𝐹‘(𝑀‘𝑥)) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
91 | 25, 90 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) |
92 | 91 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁)))) |
93 | | conntop 22476 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Conn → 𝐾 ∈ Top) |
94 | 11, 93 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
95 | | fndmin 6904 |
. . . . . . . . . . 11
⊢ ((𝑀 Fn 𝑌 ∧ 𝑁 Fn 𝑌) → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
96 | 6, 10, 95 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
97 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ⊆ 𝑌 |
98 | 96, 97 | eqsstrdi 3971 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ⊆ 𝑌) |
99 | 2 | isclo 22146 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ dom (𝑀 ∩ 𝑁) ⊆ 𝑌) → (dom (𝑀 ∩ 𝑁) ∈ (𝐾 ∩ (Clsd‘𝐾)) ↔ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
100 | 94, 98, 99 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (dom (𝑀 ∩ 𝑁) ∈ (𝐾 ∩ (Clsd‘𝐾)) ↔ ∀𝑥 ∈ 𝑌 ∃𝑦 ∈ 𝐾 (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝑥 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑧 ∈ dom (𝑀 ∩ 𝑁))))) |
101 | 92, 100 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ∈ (𝐾 ∩ (Clsd‘𝐾))) |
102 | 12, 101 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ∈ 𝐾) |
103 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑂 → (𝑀‘𝑥) = (𝑀‘𝑂)) |
104 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑂 → (𝑁‘𝑥) = (𝑁‘𝑂)) |
105 | 103, 104 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑂 → ((𝑀‘𝑥) = (𝑁‘𝑥) ↔ (𝑀‘𝑂) = (𝑁‘𝑂))) |
106 | 105 | elrab 3617 |
. . . . . . . . 9
⊢ (𝑂 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ (𝑂 ∈ 𝑌 ∧ (𝑀‘𝑂) = (𝑁‘𝑂))) |
107 | 52, 54, 106 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
108 | 107, 96 | eleqtrrd 2842 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ dom (𝑀 ∩ 𝑁)) |
109 | 108 | ne0d 4266 |
. . . . . 6
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ≠ ∅) |
110 | | inss2 4160 |
. . . . . . 7
⊢ (𝐾 ∩ (Clsd‘𝐾)) ⊆ (Clsd‘𝐾) |
111 | 110, 101 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) ∈ (Clsd‘𝐾)) |
112 | 2, 11, 102, 109, 111 | connclo 22474 |
. . . . 5
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) = 𝑌) |
113 | 112, 96 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → 𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
114 | | rabid2 3307 |
. . . 4
⊢ (𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ ∀𝑥 ∈ 𝑌 (𝑀‘𝑥) = (𝑁‘𝑥)) |
115 | 113, 114 | sylib 217 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑌 (𝑀‘𝑥) = (𝑁‘𝑥)) |
116 | 115 | r19.21bi 3132 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝑀‘𝑥) = (𝑁‘𝑥)) |
117 | 6, 10, 116 | eqfnfvd 6894 |
1
⊢ (𝜑 → 𝑀 = 𝑁) |