Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor Structured version   Visualization version   GIF version

Theorem heibor 37811
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 37800 and heiborlem1 37801 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor
Dummy variables 𝑡 𝑛 𝑦 𝑘 𝑟 𝑢 𝑚 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . 3 𝐽 = (MetOpen‘𝐷)
21heibor1 37800 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
3 cmetmet 25184 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
43adantr 480 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐷 ∈ (Met‘𝑋))
5 metxmet 24220 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61mopntop 24326 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
73, 5, 63syl 18 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐽 ∈ Top)
87adantr 480 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Top)
9 istotbnd 37759 . . . . . . . . . . . . 13 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟))))
109simprbi 496 . . . . . . . . . . . 12 (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)))
11 2nn 12201 . . . . . . . . . . . . . . 15 2 ∈ ℕ
12 nnexpcl 13981 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1311, 12mpan 690 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
1413nnrpd 12935 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
1514rpreccld 12947 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (1 / (2↑𝑛)) ∈ ℝ+)
16 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑟 = (1 / (2↑𝑛)) → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
1716eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (𝑟 = (1 / (2↑𝑛)) → (𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
1817rexbidv 3153 . . . . . . . . . . . . . . . 16 (𝑟 = (1 / (2↑𝑛)) → (∃𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
1918ralbidv 3152 . . . . . . . . . . . . . . 15 (𝑟 = (1 / (2↑𝑛)) → (∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2019anbi2d 630 . . . . . . . . . . . . . 14 (𝑟 = (1 / (2↑𝑛)) → (( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2120rexbidv 3153 . . . . . . . . . . . . 13 (𝑟 = (1 / (2↑𝑛)) → (∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2221rspccva 3576 . . . . . . . . . . . 12 ((∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ∧ (1 / (2↑𝑛)) ∈ ℝ+) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2310, 15, 22syl2an 596 . . . . . . . . . . 11 ((𝐷 ∈ (TotBnd‘𝑋) ∧ 𝑛 ∈ ℕ0) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2423expcom 413 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2524adantl 481 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
26 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑦 = (𝑚𝑣) → (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
2726eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑦 = (𝑚𝑣) → (𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
2827ac6sfi 9173 . . . . . . . . . . . . 13 ((𝑢 ∈ Fin ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
2928adantrl 716 . . . . . . . . . . . 12 ((𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
3029adantl 481 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
31 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:𝑢𝑋)
3231frnd 6660 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚𝑋)
331mopnuni 24327 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
343, 5, 333syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (CMet‘𝑋) → 𝑋 = 𝐽)
3534adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋 = 𝐽)
36353ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = 𝐽)
3732, 36sseqtrd 3972 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 𝐽)
381fvexi 6836 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ V
3938uniex 7677 . . . . . . . . . . . . . . . . . 18 𝐽 ∈ V
4039elpw2 5273 . . . . . . . . . . . . . . . . 17 (ran 𝑚 ∈ 𝒫 𝐽 ↔ ran 𝑚 𝐽)
4137, 40sylibr 234 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ 𝒫 𝐽)
42 simp2l 1200 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 ∈ Fin)
43 ffn 6652 . . . . . . . . . . . . . . . . . . 19 (𝑚:𝑢𝑋𝑚 Fn 𝑢)
44 dffn4 6742 . . . . . . . . . . . . . . . . . . 19 (𝑚 Fn 𝑢𝑚:𝑢onto→ran 𝑚)
4543, 44sylib 218 . . . . . . . . . . . . . . . . . 18 (𝑚:𝑢𝑋𝑚:𝑢onto→ran 𝑚)
46 fofi 9202 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ Fin ∧ 𝑚:𝑢onto→ran 𝑚) → ran 𝑚 ∈ Fin)
4745, 46sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ Fin ∧ 𝑚:𝑢𝑋) → ran 𝑚 ∈ Fin)
4842, 31, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ Fin)
4941, 48elind 4151 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ (𝒫 𝐽 ∩ Fin))
5026eleq2d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑚𝑣) → (𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
5150rexrn 7021 . . . . . . . . . . . . . . . . . . 19 (𝑚 Fn 𝑢 → (∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣𝑢 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
52 eliun 4945 . . . . . . . . . . . . . . . . . . 19 (𝑟 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
53 eliun 4945 . . . . . . . . . . . . . . . . . . 19 (𝑟 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣𝑢 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
5451, 52, 533bitr4g 314 . . . . . . . . . . . . . . . . . 18 (𝑚 Fn 𝑢 → (𝑟 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
5554eqrdv 2727 . . . . . . . . . . . . . . . . 17 (𝑚 Fn 𝑢 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
5631, 43, 553syl 18 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
57 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
58 uniiun 5007 . . . . . . . . . . . . . . . . . 18 𝑢 = 𝑣𝑢 𝑣
59 iuneq2 4961 . . . . . . . . . . . . . . . . . 18 (∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → 𝑣𝑢 𝑣 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
6058, 59eqtrid 2776 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → 𝑢 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
6157, 60syl 17 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
62 simp2r 1201 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 = 𝑋)
6356, 61, 623eqtr2rd 2771 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
64 iuneq1 4958 . . . . . . . . . . . . . . . 16 (𝑡 = ran 𝑚 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
6564rspceeqv 3600 . . . . . . . . . . . . . . 15 ((ran 𝑚 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑋 = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
6649, 63, 65syl2anc 584 . . . . . . . . . . . . . 14 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
67663expia 1121 . . . . . . . . . . . . 13 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋)) → ((𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
6867adantrrr 725 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ((𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
6968exlimdv 1933 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → (∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7030, 69mpd 15 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
7170rexlimdvaa 3131 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7225, 71syld 47 . . . . . . . 8 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7372ralrimdva 3129 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑛 ∈ ℕ0𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7439pwex 5319 . . . . . . . . 9 𝒫 𝐽 ∈ V
7574inex1 5256 . . . . . . . 8 (𝒫 𝐽 ∩ Fin) ∈ V
76 nn0ennn 13886 . . . . . . . . 9 0 ≈ ℕ
77 nnenom 13887 . . . . . . . . 9 ℕ ≈ ω
7876, 77entri 8933 . . . . . . . 8 0 ≈ ω
79 iuneq1 4958 . . . . . . . . 9 (𝑡 = (𝑚𝑛) → 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
8079eqeq2d 2740 . . . . . . . 8 (𝑡 = (𝑚𝑛) → (𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
8175, 78, 80axcc4 10333 . . . . . . 7 (∀𝑛 ∈ ℕ0𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
8273, 81syl6 35 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
83 elpwi 4558 . . . . . . . . . 10 (𝑟 ∈ 𝒫 𝐽𝑟𝐽)
84 eqid 2729 . . . . . . . . . . . 12 {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣} = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣}
85 eqid 2729 . . . . . . . . . . . 12 {⟨𝑡, 𝑘⟩ ∣ (𝑘 ∈ ℕ0𝑡 ∈ (𝑚𝑘) ∧ (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣})} = {⟨𝑡, 𝑘⟩ ∣ (𝑘 ∈ ℕ0𝑡 ∈ (𝑚𝑘) ∧ (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣})}
86 eqid 2729 . . . . . . . . . . . 12 (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
87 simpl 482 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝐷 ∈ (CMet‘𝑋))
8834pweqd 4568 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (CMet‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
8988ineq1d 4170 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝑋 ∩ Fin) = (𝒫 𝐽 ∩ Fin))
9089feq3d 6637 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → (𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin) ↔ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)))
9190biimpar 477 . . . . . . . . . . . . 13 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9291adantrr 717 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin))
93 oveq1 7356 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
9493cbviunv 4989 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)
95 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) → 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin))
96 inss1 4188 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝐽
9796, 88sseqtrrid 3979 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝑋)
98 fss 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝑋) → 𝑚:ℕ0⟶𝒫 𝑋)
9995, 97, 98syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → 𝑚:ℕ0⟶𝒫 𝑋)
10099ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑚𝑛) ∈ 𝒫 𝑋)
101100elpwid 4560 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑚𝑛) ⊆ 𝑋)
102101sselda 3935 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → 𝑦𝑋)
103 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → 𝑛 ∈ ℕ0)
104 oveq1 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑚))))
105 oveq2 7357 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
106105oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1 / (2↑𝑚)) = (1 / (2↑𝑛)))
107106oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑦(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
108 ovex 7382 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ∈ V
109104, 107, 86, 108ovmpo 7509 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑋𝑛 ∈ ℕ0) → (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
110102, 103, 109syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
111110iuneq2dv 4966 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈ (𝑚𝑛)(𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
11294, 111eqtrid 2776 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
113112eqeq2d 2740 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
114113biimprd 248 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)))
115114ralimdva 3141 . . . . . . . . . . . . . 14 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → (∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)))
116115impr 454 . . . . . . . . . . . . 13 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
117 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑚𝑛) = (𝑚𝑘))
118117iuneq1d 4969 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
119 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 𝑘𝑡 ∈ (𝑚𝑘)) → 𝑛 = 𝑘)
120119oveq2d 7365 . . . . . . . . . . . . . . . . 17 ((𝑛 = 𝑘𝑡 ∈ (𝑚𝑘)) → (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
121120iuneq2dv 4966 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
122118, 121eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
123122eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)))
124123cbvralvw 3207 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ ∀𝑘 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
125116, 124sylib 218 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑘 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
1261, 84, 85, 86, 87, 92, 125heiborlem10 37810 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) ∧ (𝑟𝐽 𝐽 = 𝑟)) → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)
127126exp32 420 . . . . . . . . . 10 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟𝐽 → ( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
12883, 127syl5 34 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟 ∈ 𝒫 𝐽 → ( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
129128ralrimiv 3120 . . . . . . . 8 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣))
130129ex 412 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → ((𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
131130exlimdv 1933 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → (∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
13282, 131syld 47 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
133132imp 406 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣))
134 eqid 2729 . . . . 5 𝐽 = 𝐽
135134iscmp 23273 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
1368, 133, 135sylanbrc 583 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Comp)
1374, 136jca 511 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp))
1382, 137impbii 209 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   ciun 4941  {copab 5154  ran crn 5620   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  cmpo 7351  ωcom 7799  Fincfn 8872  1c1 11010   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  +crp 12893  cexp 13968  ∞Metcxmet 21246  Metcmet 21247  ballcbl 21248  MetOpencmopn 21251  Topctop 22778  Compccmp 23271  CMetccmet 25152  TotBndctotbnd 37756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lm 23114  df-haus 23200  df-cmp 23272  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155  df-totbnd 37758
This theorem is referenced by:  rrnheibor  37827
  Copyright terms: Public domain W3C validator