Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor Structured version   Visualization version   GIF version

Theorem heibor 37871
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 37860 and heiborlem1 37861 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
Hypothesis
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
heibor ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))

Proof of Theorem heibor
Dummy variables 𝑡 𝑛 𝑦 𝑘 𝑟 𝑢 𝑚 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . 3 𝐽 = (MetOpen‘𝐷)
21heibor1 37860 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
3 cmetmet 25213 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
43adantr 480 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐷 ∈ (Met‘𝑋))
5 metxmet 24249 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61mopntop 24355 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
73, 5, 63syl 18 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐽 ∈ Top)
87adantr 480 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Top)
9 istotbnd 37819 . . . . . . . . . . . . 13 (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟))))
109simprbi 496 . . . . . . . . . . . 12 (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)))
11 2nn 12198 . . . . . . . . . . . . . . 15 2 ∈ ℕ
12 nnexpcl 13981 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1311, 12mpan 690 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ)
1413nnrpd 12932 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℝ+)
1514rpreccld 12944 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (1 / (2↑𝑛)) ∈ ℝ+)
16 oveq2 7354 . . . . . . . . . . . . . . . . . 18 (𝑟 = (1 / (2↑𝑛)) → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
1716eqeq2d 2742 . . . . . . . . . . . . . . . . 17 (𝑟 = (1 / (2↑𝑛)) → (𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
1817rexbidv 3156 . . . . . . . . . . . . . . . 16 (𝑟 = (1 / (2↑𝑛)) → (∃𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
1918ralbidv 3155 . . . . . . . . . . . . . . 15 (𝑟 = (1 / (2↑𝑛)) → (∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2019anbi2d 630 . . . . . . . . . . . . . 14 (𝑟 = (1 / (2↑𝑛)) → (( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2120rexbidv 3156 . . . . . . . . . . . . 13 (𝑟 = (1 / (2↑𝑛)) → (∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2221rspccva 3571 . . . . . . . . . . . 12 ((∀𝑟 ∈ ℝ+𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ∧ (1 / (2↑𝑛)) ∈ ℝ+) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2310, 15, 22syl2an 596 . . . . . . . . . . 11 ((𝐷 ∈ (TotBnd‘𝑋) ∧ 𝑛 ∈ ℕ0) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
2423expcom 413 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
2524adantl 481 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
26 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑦 = (𝑚𝑣) → (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
2726eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑦 = (𝑚𝑣) → (𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
2827ac6sfi 9168 . . . . . . . . . . . . 13 ((𝑢 ∈ Fin ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
2928adantrl 716 . . . . . . . . . . . 12 ((𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
3029adantl 481 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
31 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:𝑢𝑋)
3231frnd 6659 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚𝑋)
331mopnuni 24356 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
343, 5, 333syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (CMet‘𝑋) → 𝑋 = 𝐽)
3534adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋 = 𝐽)
36353ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = 𝐽)
3732, 36sseqtrd 3966 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 𝐽)
381fvexi 6836 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ V
3938uniex 7674 . . . . . . . . . . . . . . . . . 18 𝐽 ∈ V
4039elpw2 5270 . . . . . . . . . . . . . . . . 17 (ran 𝑚 ∈ 𝒫 𝐽 ↔ ran 𝑚 𝐽)
4137, 40sylibr 234 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ 𝒫 𝐽)
42 simp2l 1200 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 ∈ Fin)
43 ffn 6651 . . . . . . . . . . . . . . . . . . 19 (𝑚:𝑢𝑋𝑚 Fn 𝑢)
44 dffn4 6741 . . . . . . . . . . . . . . . . . . 19 (𝑚 Fn 𝑢𝑚:𝑢onto→ran 𝑚)
4543, 44sylib 218 . . . . . . . . . . . . . . . . . 18 (𝑚:𝑢𝑋𝑚:𝑢onto→ran 𝑚)
46 fofi 9197 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ Fin ∧ 𝑚:𝑢onto→ran 𝑚) → ran 𝑚 ∈ Fin)
4745, 46sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ Fin ∧ 𝑚:𝑢𝑋) → ran 𝑚 ∈ Fin)
4842, 31, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ Fin)
4941, 48elind 4147 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ (𝒫 𝐽 ∩ Fin))
5026eleq2d 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑚𝑣) → (𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
5150rexrn 7020 . . . . . . . . . . . . . . . . . . 19 (𝑚 Fn 𝑢 → (∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣𝑢 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
52 eliun 4943 . . . . . . . . . . . . . . . . . . 19 (𝑟 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
53 eliun 4943 . . . . . . . . . . . . . . . . . . 19 (𝑟 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣𝑢 𝑟 ∈ ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
5451, 52, 533bitr4g 314 . . . . . . . . . . . . . . . . . 18 (𝑚 Fn 𝑢 → (𝑟 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))))
5554eqrdv 2729 . . . . . . . . . . . . . . . . 17 (𝑚 Fn 𝑢 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
5631, 43, 553syl 18 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
57 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
58 uniiun 5005 . . . . . . . . . . . . . . . . . 18 𝑢 = 𝑣𝑢 𝑣
59 iuneq2 4959 . . . . . . . . . . . . . . . . . 18 (∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → 𝑣𝑢 𝑣 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
6058, 59eqtrid 2778 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → 𝑢 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
6157, 60syl 17 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 = 𝑣𝑢 ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))
62 simp2r 1201 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 = 𝑋)
6356, 61, 623eqtr2rd 2773 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
64 iuneq1 4956 . . . . . . . . . . . . . . . 16 (𝑡 = ran 𝑚 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
6564rspceeqv 3595 . . . . . . . . . . . . . . 15 ((ran 𝑚 ∈ (𝒫 𝐽 ∩ Fin) ∧ 𝑋 = 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
6649, 63, 65syl2anc 584 . . . . . . . . . . . . . 14 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋) ∧ (𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
67663expia 1121 . . . . . . . . . . . . 13 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ 𝑢 = 𝑋)) → ((𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
6867adantrrr 725 . . . . . . . . . . . 12 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ((𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
6968exlimdv 1934 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → (∃𝑚(𝑚:𝑢𝑋 ∧ ∀𝑣𝑢 𝑣 = ((𝑚𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7030, 69mpd 15 . . . . . . . . . 10 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
7170rexlimdvaa 3134 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (∃𝑢 ∈ Fin ( 𝑢 = 𝑋 ∧ ∀𝑣𝑢𝑦𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7225, 71syld 47 . . . . . . . 8 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7372ralrimdva 3132 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑛 ∈ ℕ0𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
7439pwex 5316 . . . . . . . . 9 𝒫 𝐽 ∈ V
7574inex1 5253 . . . . . . . 8 (𝒫 𝐽 ∩ Fin) ∈ V
76 nn0ennn 13886 . . . . . . . . 9 0 ≈ ℕ
77 nnenom 13887 . . . . . . . . 9 ℕ ≈ ω
7876, 77entri 8930 . . . . . . . 8 0 ≈ ω
79 iuneq1 4956 . . . . . . . . 9 (𝑡 = (𝑚𝑛) → 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
8079eqeq2d 2742 . . . . . . . 8 (𝑡 = (𝑚𝑛) → (𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
8175, 78, 80axcc4 10330 . . . . . . 7 (∀𝑛 ∈ ℕ0𝑡 ∈ (𝒫 𝐽 ∩ Fin)𝑋 = 𝑦𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
8273, 81syl6 35 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))))
83 elpwi 4554 . . . . . . . . . 10 (𝑟 ∈ 𝒫 𝐽𝑟𝐽)
84 eqid 2731 . . . . . . . . . . . 12 {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣} = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣}
85 eqid 2731 . . . . . . . . . . . 12 {⟨𝑡, 𝑘⟩ ∣ (𝑘 ∈ ℕ0𝑡 ∈ (𝑚𝑘) ∧ (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣})} = {⟨𝑡, 𝑘⟩ ∣ (𝑘 ∈ ℕ0𝑡 ∈ (𝑚𝑘) ∧ (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 𝑣})}
86 eqid 2731 . . . . . . . . . . . 12 (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
87 simpl 482 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝐷 ∈ (CMet‘𝑋))
8834pweqd 4564 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (CMet‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
8988ineq1d 4166 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝑋 ∩ Fin) = (𝒫 𝐽 ∩ Fin))
9089feq3d 6636 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → (𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin) ↔ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)))
9190biimpar 477 . . . . . . . . . . . . 13 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9291adantrr 717 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin))
93 oveq1 7353 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
9493cbviunv 4987 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)
95 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) → 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin))
96 inss1 4184 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝐽
9796, 88sseqtrrid 3973 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝑋)
98 fss 6667 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ (𝒫 𝐽 ∩ Fin) ⊆ 𝒫 𝑋) → 𝑚:ℕ0⟶𝒫 𝑋)
9995, 97, 98syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → 𝑚:ℕ0⟶𝒫 𝑋)
10099ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑚𝑛) ∈ 𝒫 𝑋)
101100elpwid 4556 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑚𝑛) ⊆ 𝑋)
102101sselda 3929 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → 𝑦𝑋)
103 simplr 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → 𝑛 ∈ ℕ0)
104 oveq1 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑚))))
105 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
106105oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (1 / (2↑𝑚)) = (1 / (2↑𝑛)))
107106oveq2d 7362 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (𝑦(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
108 ovex 7379 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ∈ V
109104, 107, 86, 108ovmpo 7506 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑋𝑛 ∈ ℕ0) → (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
110102, 103, 109syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑦 ∈ (𝑚𝑛)) → (𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))
111110iuneq2dv 4964 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈ (𝑚𝑛)(𝑦(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
11294, 111eqtrid 2778 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))
113112eqeq2d 2742 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))
114113biimprd 248 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) ∧ 𝑛 ∈ ℕ0) → (𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)))
115114ralimdva 3144 . . . . . . . . . . . . . 14 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin)) → (∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)))
116115impr 454 . . . . . . . . . . . . 13 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
117 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝑚𝑛) = (𝑚𝑘))
118117iuneq1d 4967 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))
119 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 𝑘𝑡 ∈ (𝑚𝑘)) → 𝑛 = 𝑘)
120119oveq2d 7362 . . . . . . . . . . . . . . . . 17 ((𝑛 = 𝑘𝑡 ∈ (𝑚𝑘)) → (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
121120iuneq2dv 4964 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
122118, 121eqtrd 2766 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
123122eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)))
124123cbvralvw 3210 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑛)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ ∀𝑘 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
125116, 124sylib 218 . . . . . . . . . . . 12 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑘 ∈ ℕ0 𝑋 = 𝑡 ∈ (𝑚𝑘)(𝑡(𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))
1261, 84, 85, 86, 87, 92, 125heiborlem10 37870 . . . . . . . . . . 11 (((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) ∧ (𝑟𝐽 𝐽 = 𝑟)) → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)
127126exp32 420 . . . . . . . . . 10 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟𝐽 → ( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
12883, 127syl5 34 . . . . . . . . 9 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟 ∈ 𝒫 𝐽 → ( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
129128ralrimiv 3123 . . . . . . . 8 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣))
130129ex 412 . . . . . . 7 (𝐷 ∈ (CMet‘𝑋) → ((𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
131130exlimdv 1934 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → (∃𝑚(𝑚:ℕ0⟶(𝒫 𝐽 ∩ Fin) ∧ ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝑚𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
13282, 131syld 47 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
133132imp 406 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣))
134 eqid 2731 . . . . 5 𝐽 = 𝐽
135134iscmp 23303 . . . 4 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽( 𝐽 = 𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin) 𝐽 = 𝑣)))
1368, 133, 135sylanbrc 583 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Comp)
1374, 136jca 511 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp))
1382, 137impbii 209 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   ciun 4939  {copab 5151  ran crn 5615   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  ωcom 7796  Fincfn 8869  1c1 11007   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  +crp 12890  cexp 13968  ∞Metcxmet 21276  Metcmet 21277  ballcbl 21278  MetOpencmopn 21281  Topctop 22808  Compccmp 23301  CMetccmet 25181  TotBndctotbnd 37816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-icc 13252  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lm 23144  df-haus 23230  df-cmp 23302  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-cfil 25182  df-cau 25183  df-cmet 25184  df-totbnd 37818
This theorem is referenced by:  rrnheibor  37887
  Copyright terms: Public domain W3C validator