Step | Hyp | Ref
| Expression |
1 | | heibor.1 |
. . 3
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | 1 | heibor1 35895 |
. 2
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) |
3 | | cmetmet 24355 |
. . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
4 | 3 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐷 ∈ (Met‘𝑋)) |
5 | | metxmet 23395 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 1 | mopntop 23501 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
7 | 3, 5, 6 | 3syl 18 |
. . . . 5
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐽 ∈ Top) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Top) |
9 | | istotbnd 35854 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (TotBnd‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)))) |
10 | 9 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ ℝ+
∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟))) |
11 | | 2nn 11976 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
12 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
13 | 11, 12 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℕ) |
14 | 13 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℝ+) |
15 | 14 | rpreccld 12711 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (1 / (2↑𝑛))
∈ ℝ+) |
16 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = (1 / (2↑𝑛)) → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
17 | 16 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = (1 / (2↑𝑛)) → (𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
18 | 17 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = (1 / (2↑𝑛)) → (∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
19 | 18 | ralbidv 3120 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (1 / (2↑𝑛)) → (∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟) ↔ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
20 | 19 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (1 / (2↑𝑛)) → ((∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ (∪ 𝑢 = 𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) |
21 | 20 | rexbidv 3225 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (1 / (2↑𝑛)) → (∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ↔ ∃𝑢 ∈ Fin (∪
𝑢 = 𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) |
22 | 21 | rspccva 3551 |
. . . . . . . . . . . 12
⊢
((∀𝑟 ∈
ℝ+ ∃𝑢 ∈ Fin (∪
𝑢 = 𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)𝑟)) ∧ (1 / (2↑𝑛)) ∈ ℝ+) →
∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
23 | 10, 15, 22 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (TotBnd‘𝑋) ∧ 𝑛 ∈ ℕ0) →
∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
24 | 23 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝐷 ∈
(TotBnd‘𝑋) →
∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) |
25 | 24 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) |
26 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑚‘𝑣) → (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
27 | 26 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑚‘𝑣) → (𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
28 | 27 | ac6sfi 8988 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ Fin ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑚(𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
29 | 28 | adantrl 712 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ Fin ∧ (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑚(𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
30 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑚(𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
31 | | simp3l 1199 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:𝑢⟶𝑋) |
32 | 31 | frnd 6592 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ⊆ 𝑋) |
33 | 1 | mopnuni 23502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
34 | 3, 5, 33 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 = ∪ 𝐽) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → 𝑋 = ∪
𝐽) |
36 | 35 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = ∪ 𝐽) |
37 | 32, 36 | sseqtrd 3957 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ⊆ ∪ 𝐽) |
38 | 1 | fvexi 6770 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 ∈ V |
39 | 38 | uniex 7572 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝐽
∈ V |
40 | 39 | elpw2 5264 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
𝑚 ∈ 𝒫 ∪ 𝐽
↔ ran 𝑚 ⊆ ∪ 𝐽) |
41 | 37, 40 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ 𝒫 ∪ 𝐽) |
42 | | simp2l 1197 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑢 ∈ Fin) |
43 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚:𝑢⟶𝑋 → 𝑚 Fn 𝑢) |
44 | | dffn4 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 Fn 𝑢 ↔ 𝑚:𝑢–onto→ran 𝑚) |
45 | 43, 44 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚:𝑢⟶𝑋 → 𝑚:𝑢–onto→ran 𝑚) |
46 | | fofi 9035 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ Fin ∧ 𝑚:𝑢–onto→ran 𝑚) → ran 𝑚 ∈ Fin) |
47 | 45, 46 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ Fin ∧ 𝑚:𝑢⟶𝑋) → ran 𝑚 ∈ Fin) |
48 | 42, 31, 47 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ Fin) |
49 | 41, 48 | elind 4124 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ran 𝑚 ∈ (𝒫 ∪ 𝐽
∩ Fin)) |
50 | 26 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑚‘𝑣) → (𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 ∈ ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
51 | 50 | rexrn 6945 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 Fn 𝑢 → (∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣 ∈ 𝑢 𝑟 ∈ ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
52 | | eliun 4925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ∪ 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑦 ∈ ran 𝑚 𝑟 ∈ (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
53 | | eliun 4925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ∪ 𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))) ↔ ∃𝑣 ∈ 𝑢 𝑟 ∈ ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
54 | 51, 52, 53 | 3bitr4g 313 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 Fn 𝑢 → (𝑟 ∈ ∪
𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑟 ∈ ∪
𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) |
55 | 54 | eqrdv 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 Fn 𝑢 → ∪
𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ∪
𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
56 | 31, 43, 55 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∪ 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ∪
𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
57 | | simp3r 1200 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
58 | | uniiun 4984 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑢 =
∪ 𝑣 ∈ 𝑢 𝑣 |
59 | | iuneq2 4940 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑣 ∈
𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → ∪ 𝑣 ∈ 𝑢 𝑣 = ∪ 𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
60 | 58, 59 | syl5eq 2791 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑣 ∈
𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))) → ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
61 | 57, 60 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∪
𝑢 = ∪ 𝑣 ∈ 𝑢 ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) |
62 | | simp2r 1198 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∪
𝑢 = 𝑋) |
63 | 56, 61, 62 | 3eqtr2rd 2785 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑋 = ∪ 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
64 | | iuneq1 4937 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = ran 𝑚 → ∪
𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ∪
𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
65 | 64 | rspceeqv 3567 |
. . . . . . . . . . . . . . 15
⊢ ((ran
𝑚 ∈ (𝒫 ∪ 𝐽
∩ Fin) ∧ 𝑋 =
∪ 𝑦 ∈ ran 𝑚(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
66 | 49, 63, 65 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋) ∧ (𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛))))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
67 | 66 | 3expia 1119 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ ∪ 𝑢 =
𝑋)) → ((𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
68 | 67 | adantrrr 721 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ((𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
69 | 68 | exlimdv 1937 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → (∃𝑚(𝑚:𝑢⟶𝑋 ∧ ∀𝑣 ∈ 𝑢 𝑣 = ((𝑚‘𝑣)(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
70 | 30, 69 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) ∧ (𝑢 ∈ Fin ∧ (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
71 | 70 | rexlimdvaa 3213 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) →
(∃𝑢 ∈ Fin (∪ 𝑢 =
𝑋 ∧ ∀𝑣 ∈ 𝑢 ∃𝑦 ∈ 𝑋 𝑣 = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
72 | 25, 71 | syld 47 |
. . . . . . . 8
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑛 ∈ ℕ0) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
73 | 72 | ralrimdva 3112 |
. . . . . . 7
⊢ (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑛 ∈ ℕ0 ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
74 | 39 | pwex 5298 |
. . . . . . . . 9
⊢ 𝒫
∪ 𝐽 ∈ V |
75 | 74 | inex1 5236 |
. . . . . . . 8
⊢
(𝒫 ∪ 𝐽 ∩ Fin) ∈ V |
76 | | nn0ennn 13627 |
. . . . . . . . 9
⊢
ℕ0 ≈ ℕ |
77 | | nnenom 13628 |
. . . . . . . . 9
⊢ ℕ
≈ ω |
78 | 76, 77 | entri 8749 |
. . . . . . . 8
⊢
ℕ0 ≈ ω |
79 | | iuneq1 4937 |
. . . . . . . . 9
⊢ (𝑡 = (𝑚‘𝑛) → ∪
𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) = ∪
𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
80 | 79 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑡 = (𝑚‘𝑛) → (𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ↔ 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
81 | 75, 78, 80 | axcc4 10126 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ0 ∃𝑡 ∈ (𝒫 ∪ 𝐽
∩ Fin)𝑋 = ∪ 𝑦 ∈ 𝑡 (𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∃𝑚(𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
82 | 73, 81 | syl6 35 |
. . . . . 6
⊢ (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∃𝑚(𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))))) |
83 | | elpwi 4539 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝒫 𝐽 → 𝑟 ⊆ 𝐽) |
84 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 ⊆ ∪ 𝑣} = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
85 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
{〈𝑡, 𝑘〉 ∣ (𝑘 ∈ ℕ0
∧ 𝑡 ∈ (𝑚‘𝑘) ∧ (𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 ⊆ ∪ 𝑣})} = {〈𝑡, 𝑘〉 ∣ (𝑘 ∈ ℕ0 ∧ 𝑡 ∈ (𝑚‘𝑘) ∧ (𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘) ∈ {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)𝑢 ⊆ ∪ 𝑣})} |
86 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
87 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝐷 ∈ (CMet‘𝑋)) |
88 | 34 | pweqd 4549 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝒫 𝑋 = 𝒫 ∪ 𝐽) |
89 | 88 | ineq1d 4142 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (CMet‘𝑋) → (𝒫 𝑋 ∩ Fin) = (𝒫 ∪ 𝐽
∩ Fin)) |
90 | 89 | feq3d 6571 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (CMet‘𝑋) → (𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin) ↔ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin))) |
91 | 90 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
92 | 91 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → 𝑚:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
93 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑦 → (𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)) |
94 | 93 | cbviunv 4966 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) |
95 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) → 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) |
96 | | inss1 4159 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(𝒫 ∪ 𝐽 ∩ Fin) ⊆ 𝒫 ∪ 𝐽 |
97 | 96, 88 | sseqtrrid 3970 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐷 ∈ (CMet‘𝑋) → (𝒫 ∪ 𝐽
∩ Fin) ⊆ 𝒫 𝑋) |
98 | | fss 6601 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ (𝒫 ∪ 𝐽 ∩ Fin) ⊆ 𝒫 𝑋) → 𝑚:ℕ0⟶𝒫 𝑋) |
99 | 95, 97, 98 | syl2anr 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) → 𝑚:ℕ0⟶𝒫 𝑋) |
100 | 99 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) → (𝑚‘𝑛) ∈ 𝒫 𝑋) |
101 | 100 | elpwid 4541 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) → (𝑚‘𝑛) ⊆ 𝑋) |
102 | 101 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) ∧ 𝑦 ∈ (𝑚‘𝑛)) → 𝑦 ∈ 𝑋) |
103 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) ∧ 𝑦 ∈ (𝑚‘𝑛)) → 𝑛 ∈ ℕ0) |
104 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑦 → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑚)))) |
105 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛)) |
106 | 105 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑛 → (1 / (2↑𝑚)) = (1 / (2↑𝑛))) |
107 | 106 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → (𝑦(ball‘𝐷)(1 / (2↑𝑚))) = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
108 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(ball‘𝐷)(1 / (2↑𝑛))) ∈ V |
109 | 104, 107,
86, 108 | ovmpo 7411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑋 ∧ 𝑛 ∈ ℕ0) → (𝑦(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
110 | 102, 103,
109 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) ∧ 𝑦 ∈ (𝑚‘𝑛)) → (𝑦(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
111 | 110 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) → ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
112 | 94, 111 | syl5eq 2791 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) → ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) |
113 | 112 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) → (𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) |
114 | 113 | biimprd 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) ∧ 𝑛 ∈
ℕ0) → (𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → 𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))) |
115 | 114 | ralimdva 3102 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin)) → (∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛))) |
116 | 115 | impr 454 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)) |
117 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (𝑚‘𝑛) = (𝑚‘𝑘)) |
118 | 117 | iuneq1d 4948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → ∪
𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = ∪ 𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛)) |
119 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 = 𝑘 ∧ 𝑡 ∈ (𝑚‘𝑘)) → 𝑛 = 𝑘) |
120 | 119 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 = 𝑘 ∧ 𝑡 ∈ (𝑚‘𝑘)) → (𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = (𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)) |
121 | 120 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → ∪
𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = ∪ 𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)) |
122 | 118, 121 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ∪
𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) = ∪ 𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)) |
123 | 122 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ 𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘))) |
124 | 123 | cbvralvw 3372 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ0 𝑋 =
∪ 𝑡 ∈ (𝑚‘𝑛)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑛) ↔ ∀𝑘 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)) |
125 | 116, 124 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑘 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ (𝑚‘𝑘)(𝑡(𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))𝑘)) |
126 | 1, 84, 85, 86, 87, 92, 125 | heiborlem10 35905 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) ∧ (𝑟 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪
𝑟)) → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣) |
127 | 126 | exp32 420 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟 ⊆ 𝐽 → (∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣))) |
128 | 83, 127 | syl5 34 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → (𝑟 ∈ 𝒫 𝐽 → (∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣))) |
129 | 128 | ralrimiv 3106 |
. . . . . . . 8
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛))))) → ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣)) |
130 | 129 | ex 412 |
. . . . . . 7
⊢ (𝐷 ∈ (CMet‘𝑋) → ((𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣))) |
131 | 130 | exlimdv 1937 |
. . . . . 6
⊢ (𝐷 ∈ (CMet‘𝑋) → (∃𝑚(𝑚:ℕ0⟶(𝒫 ∪ 𝐽
∩ Fin) ∧ ∀𝑛
∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝑚‘𝑛)(𝑦(ball‘𝐷)(1 / (2↑𝑛)))) → ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣))) |
132 | 82, 131 | syld 47 |
. . . . 5
⊢ (𝐷 ∈ (CMet‘𝑋) → (𝐷 ∈ (TotBnd‘𝑋) → ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣))) |
133 | 132 | imp 406 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪
𝑟 → ∃𝑣 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 =
∪ 𝑣)) |
134 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
135 | 134 | iscmp 22447 |
. . . 4
⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪
𝐽 = ∪ 𝑟
→ ∃𝑣 ∈
(𝒫 𝑟 ∩
Fin)∪ 𝐽 = ∪ 𝑣))) |
136 | 8, 133, 135 | sylanbrc 582 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → 𝐽 ∈ Comp) |
137 | 4, 136 | jca 511 |
. 2
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)) → (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp)) |
138 | 2, 137 | impbii 208 |
1
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) |