Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Structured version   Visualization version   GIF version

Theorem ablo4pnp 36389
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1 𝑋 = ran 𝐺
abl4pnp.2 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablo4pnp ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 1090 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 abl4pnp.1 . . . . . 6 𝑋 = ran 𝐺
3 abl4pnp.2 . . . . . 6 𝐷 = ( /𝑔𝐺)
42, 3ablomuldiv 29543 . . . . 5 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
51, 4sylan2br 596 . . . 4 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
65adantrrr 724 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
76oveq1d 7376 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹))
8 ablogrpo 29538 . . . . . . 7 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
92grpocl 29491 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
1093expib 1123 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
118, 10syl 17 . . . . . 6 (𝐺 ∈ AbelOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
1211anim1d 612 . . . . 5 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋))))
13 3anass 1096 . . . . 5 (((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋) ↔ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋)))
1412, 13syl6ibr 252 . . . 4 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)))
1514imp 408 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋))
162, 3ablodivdiv4 29545 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
1715, 16syldan 592 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
182, 3grpodivcl 29530 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
19183expib 1123 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋))
2019anim1d 612 . . . . . 6 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋))))
21 an4 655 . . . . . 6 (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) ↔ ((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)))
22 3anass 1096 . . . . . 6 (((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋) ↔ ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋)))
2320, 21, 223imtr4g 296 . . . . 5 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)))
2423imp 408 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋))
252, 3grpomuldivass 29532 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
2624, 25syldan 592 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
278, 26sylan 581 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
287, 17, 273eqtr3d 2781 1 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  ran crn 5638  cfv 6500  (class class class)co 7361  GrpOpcgr 29480   /𝑔 cgs 29483  AbelOpcablo 29535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-grpo 29484  df-gid 29485  df-ginv 29486  df-gdiv 29487  df-ablo 29536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator