Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Structured version   Visualization version   GIF version

Theorem ablo4pnp 37881
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1 𝑋 = ran 𝐺
abl4pnp.2 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablo4pnp ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 1088 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 abl4pnp.1 . . . . . 6 𝑋 = ran 𝐺
3 abl4pnp.2 . . . . . 6 𝐷 = ( /𝑔𝐺)
42, 3ablomuldiv 30488 . . . . 5 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
51, 4sylan2br 595 . . . 4 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
65adantrrr 725 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
76oveq1d 7405 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹))
8 ablogrpo 30483 . . . . . . 7 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
92grpocl 30436 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
1093expib 1122 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
118, 10syl 17 . . . . . 6 (𝐺 ∈ AbelOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
1211anim1d 611 . . . . 5 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋))))
13 3anass 1094 . . . . 5 (((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋) ↔ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋)))
1412, 13imbitrrdi 252 . . . 4 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)))
1514imp 406 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋))
162, 3ablodivdiv4 30490 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
1715, 16syldan 591 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
182, 3grpodivcl 30475 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
19183expib 1122 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋))
2019anim1d 611 . . . . . 6 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋))))
21 an4 656 . . . . . 6 (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) ↔ ((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)))
22 3anass 1094 . . . . . 6 (((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋) ↔ ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋)))
2320, 21, 223imtr4g 296 . . . . 5 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)))
2423imp 406 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋))
252, 3grpomuldivass 30477 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
2624, 25syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
278, 26sylan 580 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
287, 17, 273eqtr3d 2773 1 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5642  cfv 6514  (class class class)co 7390  GrpOpcgr 30425   /𝑔 cgs 30428  AbelOpcablo 30480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator