Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Structured version   Visualization version   GIF version

Theorem ablo4pnp 34010
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1 𝑋 = ran 𝐺
abl4pnp.2 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablo4pnp ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 1073 . . . . 5 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 abl4pnp.1 . . . . . 6 𝑋 = ran 𝐺
3 abl4pnp.2 . . . . . 6 𝐷 = ( /𝑔𝐺)
42, 3ablomuldiv 27745 . . . . 5 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
51, 4sylan2br 582 . . . 4 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
65adantrrr 704 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
76oveq1d 6810 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹))
8 ablogrpo 27740 . . . . . . 7 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
92grpocl 27693 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
1093expib 1116 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
118, 10syl 17 . . . . . 6 (𝐺 ∈ AbelOp → ((𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋))
1211anim1d 598 . . . . 5 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋))))
13 3anass 1080 . . . . 5 (((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋) ↔ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶𝑋𝐹𝑋)))
1412, 13syl6ibr 242 . . . 4 (𝐺 ∈ AbelOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)))
1514imp 393 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋))
162, 3ablodivdiv4 27747 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐹𝑋)) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
1715, 16syldan 579 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)))
182, 3grpodivcl 27732 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
19183expib 1116 . . . . . . 7 (𝐺 ∈ GrpOp → ((𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋))
2019anim1d 598 . . . . . 6 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋))))
21 an4 635 . . . . . 6 (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) ↔ ((𝐴𝑋𝐶𝑋) ∧ (𝐵𝑋𝐹𝑋)))
22 3anass 1080 . . . . . 6 (((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋) ↔ ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵𝑋𝐹𝑋)))
2320, 21, 223imtr4g 285 . . . . 5 (𝐺 ∈ GrpOp → (((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)))
2423imp 393 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋))
252, 3grpomuldivass 27734 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐷𝐶) ∈ 𝑋𝐵𝑋𝐹𝑋)) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
2624, 25syldan 579 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
278, 26sylan 569 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
287, 17, 273eqtr3d 2813 1 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  ran crn 5251  cfv 6030  (class class class)co 6795  GrpOpcgr 27682   /𝑔 cgs 27685  AbelOpcablo 27737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-1st 7318  df-2nd 7319  df-grpo 27686  df-gid 27687  df-ginv 27688  df-gdiv 27689  df-ablo 27738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator