Proof of Theorem ablo4pnp
Step | Hyp | Ref
| Expression |
1 | | df-3an 1088 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) |
2 | | abl4pnp.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
3 | | abl4pnp.2 |
. . . . . 6
⊢ 𝐷 = ( /𝑔
‘𝐺) |
4 | 2, 3 | ablomuldiv 28911 |
. . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
5 | 1, 4 | sylan2br 595 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
6 | 5 | adantrrr 722 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
7 | 6 | oveq1d 7292 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹)) |
8 | | ablogrpo 28906 |
. . . . . . 7
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
9 | 2 | grpocl 28859 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
10 | 9 | 3expib 1121 |
. . . . . . 7
⊢ (𝐺 ∈ GrpOp → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)) |
11 | 8, 10 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ AbelOp → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)) |
12 | 11 | anim1d 611 |
. . . . 5
⊢ (𝐺 ∈ AbelOp → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)))) |
13 | | 3anass 1094 |
. . . . 5
⊢ (((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋) ↔ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) |
14 | 12, 13 | syl6ibr 251 |
. . . 4
⊢ (𝐺 ∈ AbelOp → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) |
15 | 14 | imp 407 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) |
16 | 2, 3 | ablodivdiv4 28913 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹))) |
17 | 15, 16 | syldan 591 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐷𝐶)𝐷𝐹) = ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹))) |
18 | 2, 3 | grpodivcl 28898 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ 𝑋) |
19 | 18 | 3expib 1121 |
. . . . . . 7
⊢ (𝐺 ∈ GrpOp → ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)) |
20 | 19 | anim1d 611 |
. . . . . 6
⊢ (𝐺 ∈ GrpOp → (((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)))) |
21 | | an4 653 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) |
22 | | 3anass 1094 |
. . . . . 6
⊢ (((𝐴𝐷𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋) ↔ ((𝐴𝐷𝐶) ∈ 𝑋 ∧ (𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) |
23 | 20, 21, 22 | 3imtr4g 296 |
. . . . 5
⊢ (𝐺 ∈ GrpOp → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) |
24 | 23 | imp 407 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐷𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) |
25 | 2, 3 | grpomuldivass 28900 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐷𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋)) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) |
26 | 24, 25 | syldan 591 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) |
27 | 8, 26 | sylan 580 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → (((𝐴𝐷𝐶)𝐺𝐵)𝐷𝐹) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) |
28 | 7, 17, 27 | 3eqtr3d 2786 |
1
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) |