MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt2mul2div Structured version   Visualization version   GIF version

Theorem lt2mul2div 12068
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
Assertion
Ref Expression
lt2mul2div (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))

Proof of Theorem lt2mul2div
StepHypRef Expression
1 recn 11165 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2 recn 11165 . . . . . . . . 9 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
3 mulcom 11161 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
41, 2, 3syl2an 596 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
54oveq1d 7405 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵))
65adantl 481 . . . . . 6 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵))
72ad2antll 729 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
81ad2antrl 728 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
9 recn 11165 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
109adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
11 gt0ne0 11650 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
1210, 11jca 511 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1312adantr 480 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
14 divass 11862 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
157, 8, 13, 14syl3anc 1373 . . . . . 6 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
166, 15eqtrd 2765 . . . . 5 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1716adantrrr 725 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1817adantll 714 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1918breq2d 5122 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐴 < ((𝐶 · 𝐷) / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
20 simpll 766 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐴 ∈ ℝ)
21 remulcl 11160 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 · 𝐷) ∈ ℝ)
2221adantrr 717 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 · 𝐷) ∈ ℝ)
2322adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 · 𝐷) ∈ ℝ)
24 simplr 768 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
25 ltmuldiv 12063 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐷) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵)))
2620, 23, 24, 25syl3anc 1373 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵)))
27 simpl 482 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
2827, 11jca 511 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
29 redivcl 11908 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) ∈ ℝ)
30293expb 1120 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) ∈ ℝ)
3128, 30sylan2 593 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
3231ancoms 458 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
3332ad2ant2lr 748 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 / 𝐵) ∈ ℝ)
34 simprr 772 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
35 ltdivmul 12065 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
3620, 33, 34, 35syl3anc 1373 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
3719, 26, 363bitr4d 311 1 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by:  lt2mul2divd  13071  icopnfhmeo  24848  nmoleub2lem3  25022  dvcvx  25932  log2ub  26866  chebbnd1lem3  27389  subfaclim  35182
  Copyright terms: Public domain W3C validator