Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq1 Structured version   Visualization version   GIF version

Theorem afv2eq1 44708
Description: Equality theorem for function value, analogous to fveq1 6773. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
afv2eq1 (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴))

Proof of Theorem afv2eq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2739 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2afv2eq12d 44707 1 (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-dfat 44611  df-afv2 44701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator