![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq1 6914. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq1 | ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 = 𝐺) | |
2 | eqidd 2741 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐴) | |
3 | 1, 2 | afv2eq12d 47120 | 1 ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ''''cafv2 47113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-iota 6520 df-fun 6570 df-dfat 47024 df-afv2 47114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |