| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function value, analogous to fveq1 6857. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2eq1 | ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 = 𝐺) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐴) | |
| 3 | 1, 2 | afv2eq12d 47216 | 1 ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ''''cafv2 47209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-dfat 47120 df-afv2 47210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |