Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq1 Structured version   Visualization version   GIF version

Theorem afv2eq1 46598
Description: Equality theorem for function value, analogous to fveq1 6899. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
afv2eq1 (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴))

Proof of Theorem afv2eq1
StepHypRef Expression
1 id 22 . 2 (𝐹 = 𝐺𝐹 = 𝐺)
2 eqidd 2728 . 2 (𝐹 = 𝐺𝐴 = 𝐴)
31, 2afv2eq12d 46597 1 (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  ''''cafv2 46590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-iota 6503  df-fun 6553  df-dfat 46501  df-afv2 46591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator