![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq1 6903. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq1 | ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹 = 𝐺 → 𝐹 = 𝐺) | |
2 | eqidd 2737 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐴) | |
3 | 1, 2 | afv2eq12d 47200 | 1 ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ''''cafv2 47193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-iota 6512 df-fun 6561 df-dfat 47104 df-afv2 47194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |