| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function value, analogous to fveq2 6826. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2eq2 | ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐹 = 𝐹) | |
| 2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | afv2eq12d 47219 | 1 ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ''''cafv2 47212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-dfat 47123 df-afv2 47213 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |