![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq2 6412. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq2 | ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2801 | . 2 ⊢ (𝐴 = 𝐵 → 𝐹 = 𝐹) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | afv2eq12d 42064 | 1 ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ''''cafv2 42057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-iota 6065 df-fun 6104 df-dfat 41968 df-afv2 42058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |