Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq2 Structured version   Visualization version   GIF version

Theorem afv2eq2 47122
Description: Equality theorem for function value, analogous to fveq2 6915. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
afv2eq2 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))

Proof of Theorem afv2eq2
StepHypRef Expression
1 eqidd 2741 . 2 (𝐴 = 𝐵𝐹 = 𝐹)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2afv2eq12d 47120 1 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ''''cafv2 47113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-iota 6520  df-fun 6570  df-dfat 47024  df-afv2 47114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator