Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq2 Structured version   Visualization version   GIF version

Theorem afv2eq2 44660
Description: Equality theorem for function value, analogous to fveq2 6768. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
afv2eq2 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))

Proof of Theorem afv2eq2
StepHypRef Expression
1 eqidd 2740 . 2 (𝐴 = 𝐵𝐹 = 𝐹)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2afv2eq12d 44658 1 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ''''cafv2 44651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-dfat 44562  df-afv2 44652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator