Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq2 6804. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq2 | ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . 2 ⊢ (𝐴 = 𝐵 → 𝐹 = 𝐹) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | afv2eq12d 44951 | 1 ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ''''cafv2 44944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-iota 6410 df-fun 6460 df-dfat 44855 df-afv2 44945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |