Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq2 Structured version   Visualization version   GIF version

Theorem afv2eq2 47117
Description: Equality theorem for function value, analogous to fveq2 6901. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
afv2eq2 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))

Proof of Theorem afv2eq2
StepHypRef Expression
1 eqidd 2734 . 2 (𝐴 = 𝐵𝐹 = 𝐹)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2afv2eq12d 47115 1 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  ''''cafv2 47108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-iota 6510  df-fun 6560  df-dfat 47019  df-afv2 47109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator