Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq2 Structured version   Visualization version   GIF version

Theorem afv2eq2 45925
Description: Equality theorem for function value, analogous to fveq2 6892. (Contributed by AV, 4-Sep-2022.)
Assertion
Ref Expression
afv2eq2 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))

Proof of Theorem afv2eq2
StepHypRef Expression
1 eqidd 2734 . 2 (𝐴 = 𝐵𝐹 = 𝐹)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2afv2eq12d 45923 1 (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ''''cafv2 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-dfat 45827  df-afv2 45917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator