Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq2 6768. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq2 | ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2740 | . 2 ⊢ (𝐴 = 𝐵 → 𝐹 = 𝐹) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | afv2eq12d 44658 | 1 ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ''''cafv2 44651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-dfat 44562 df-afv2 44652 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |