Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq12d Structured version   Visualization version   GIF version

Theorem afv2eq12d 47220
Description: Equality deduction for function value, analogous to fveq12d 6868. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
afv2eq12d.1 (𝜑𝐹 = 𝐺)
afv2eq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afv2eq12d (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))

Proof of Theorem afv2eq12d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 afv2eq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afv2eq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 47131 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
4 eqidd 2731 . . . . 5 (𝜑𝑥 = 𝑥)
52, 1, 4breq123d 5124 . . . 4 (𝜑 → (𝐴𝐹𝑥𝐵𝐺𝑥))
65iotabidv 6498 . . 3 (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥))
71rneqd 5905 . . . . 5 (𝜑 → ran 𝐹 = ran 𝐺)
87unieqd 4887 . . . 4 (𝜑 ran 𝐹 = ran 𝐺)
98pweqd 4583 . . 3 (𝜑 → 𝒫 ran 𝐹 = 𝒫 ran 𝐺)
103, 6, 9ifbieq12d 4520 . 2 (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺))
11 df-afv2 47214 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
12 df-afv2 47214 . 2 (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺)
1310, 11, 123eqtr4g 2790 1 (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4491  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  ran crn 5642  cio 6465   defAt wdfat 47121  ''''cafv2 47213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-dfat 47124  df-afv2 47214
This theorem is referenced by:  afv2eq1  47221  afv2eq2  47222  csbafv212g  47224
  Copyright terms: Public domain W3C validator