![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq12d | Structured version Visualization version GIF version |
Description: Equality deduction for function value, analogous to fveq12d 6914. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
afv2eq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
afv2eq12d | ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv2eq12d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | afv2eq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | dfateq12d 47076 | . . 3 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
4 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → 𝑥 = 𝑥) | |
5 | 2, 1, 4 | breq123d 5162 | . . . 4 ⊢ (𝜑 → (𝐴𝐹𝑥 ↔ 𝐵𝐺𝑥)) |
6 | 5 | iotabidv 6547 | . . 3 ⊢ (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥)) |
7 | 1 | rneqd 5952 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = ran 𝐺) |
8 | 7 | unieqd 4925 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ ran 𝐺) |
9 | 8 | pweqd 4622 | . . 3 ⊢ (𝜑 → 𝒫 ∪ ran 𝐹 = 𝒫 ∪ ran 𝐺) |
10 | 3, 6, 9 | ifbieq12d 4559 | . 2 ⊢ (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ∪ ran 𝐺)) |
11 | df-afv2 47159 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
12 | df-afv2 47159 | . 2 ⊢ (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ∪ ran 𝐺) | |
13 | 10, 11, 12 | 3eqtr4g 2800 | 1 ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4531 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ran crn 5690 ℩cio 6514 defAt wdfat 47066 ''''cafv2 47158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-dfat 47069 df-afv2 47159 |
This theorem is referenced by: afv2eq1 47166 afv2eq2 47167 csbafv212g 47169 |
Copyright terms: Public domain | W3C validator |