![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq12d | Structured version Visualization version GIF version |
Description: Equality deduction for function value, analogous to fveq12d 6927. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
afv2eq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
afv2eq12d | ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv2eq12d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | afv2eq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | dfateq12d 47041 | . . 3 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
4 | eqidd 2741 | . . . . 5 ⊢ (𝜑 → 𝑥 = 𝑥) | |
5 | 2, 1, 4 | breq123d 5180 | . . . 4 ⊢ (𝜑 → (𝐴𝐹𝑥 ↔ 𝐵𝐺𝑥)) |
6 | 5 | iotabidv 6557 | . . 3 ⊢ (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥)) |
7 | 1 | rneqd 5963 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = ran 𝐺) |
8 | 7 | unieqd 4944 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ ran 𝐺) |
9 | 8 | pweqd 4639 | . . 3 ⊢ (𝜑 → 𝒫 ∪ ran 𝐹 = 𝒫 ∪ ran 𝐺) |
10 | 3, 6, 9 | ifbieq12d 4576 | . 2 ⊢ (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ∪ ran 𝐺)) |
11 | df-afv2 47124 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
12 | df-afv2 47124 | . 2 ⊢ (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ∪ ran 𝐺) | |
13 | 10, 11, 12 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4548 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ran crn 5701 ℩cio 6523 defAt wdfat 47031 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-dfat 47034 df-afv2 47124 |
This theorem is referenced by: afv2eq1 47131 afv2eq2 47132 csbafv212g 47134 |
Copyright terms: Public domain | W3C validator |