Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq12d Structured version   Visualization version   GIF version

Theorem afv2eq12d 47130
Description: Equality deduction for function value, analogous to fveq12d 6927. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
afv2eq12d.1 (𝜑𝐹 = 𝐺)
afv2eq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afv2eq12d (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))

Proof of Theorem afv2eq12d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 afv2eq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afv2eq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 47041 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
4 eqidd 2741 . . . . 5 (𝜑𝑥 = 𝑥)
52, 1, 4breq123d 5180 . . . 4 (𝜑 → (𝐴𝐹𝑥𝐵𝐺𝑥))
65iotabidv 6557 . . 3 (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥))
71rneqd 5963 . . . . 5 (𝜑 → ran 𝐹 = ran 𝐺)
87unieqd 4944 . . . 4 (𝜑 ran 𝐹 = ran 𝐺)
98pweqd 4639 . . 3 (𝜑 → 𝒫 ran 𝐹 = 𝒫 ran 𝐺)
103, 6, 9ifbieq12d 4576 . 2 (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺))
11 df-afv2 47124 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
12 df-afv2 47124 . 2 (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺)
1310, 11, 123eqtr4g 2805 1 (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ifcif 4548  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ran crn 5701  cio 6523   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-dfat 47034  df-afv2 47124
This theorem is referenced by:  afv2eq1  47131  afv2eq2  47132  csbafv212g  47134
  Copyright terms: Public domain W3C validator