Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq12d Structured version   Visualization version   GIF version

Theorem afv2eq12d 44675
Description: Equality deduction for function value, analogous to fveq12d 6778. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
afv2eq12d.1 (𝜑𝐹 = 𝐺)
afv2eq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afv2eq12d (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))

Proof of Theorem afv2eq12d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 afv2eq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afv2eq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 44586 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
4 eqidd 2741 . . . . 5 (𝜑𝑥 = 𝑥)
52, 1, 4breq123d 5093 . . . 4 (𝜑 → (𝐴𝐹𝑥𝐵𝐺𝑥))
65iotabidv 6416 . . 3 (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥))
71rneqd 5846 . . . . 5 (𝜑 → ran 𝐹 = ran 𝐺)
87unieqd 4859 . . . 4 (𝜑 ran 𝐹 = ran 𝐺)
98pweqd 4558 . . 3 (𝜑 → 𝒫 ran 𝐹 = 𝒫 ran 𝐺)
103, 6, 9ifbieq12d 4493 . 2 (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺))
11 df-afv2 44669 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
12 df-afv2 44669 . 2 (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺)
1310, 11, 123eqtr4g 2805 1 (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ifcif 4465  𝒫 cpw 4539   cuni 4845   class class class wbr 5079  ran crn 5591  cio 6388   defAt wdfat 44576  ''''cafv2 44668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-iota 6390  df-fun 6434  df-dfat 44579  df-afv2 44669
This theorem is referenced by:  afv2eq1  44676  afv2eq2  44677  csbafv212g  44679
  Copyright terms: Public domain W3C validator