![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2eq12d | Structured version Visualization version GIF version |
Description: Equality deduction for function value, analogous to fveq12d 6854. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
afv2eq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
afv2eq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
afv2eq12d | ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv2eq12d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | afv2eq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | dfateq12d 45432 | . . 3 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
4 | eqidd 2738 | . . . . 5 ⊢ (𝜑 → 𝑥 = 𝑥) | |
5 | 2, 1, 4 | breq123d 5124 | . . . 4 ⊢ (𝜑 → (𝐴𝐹𝑥 ↔ 𝐵𝐺𝑥)) |
6 | 5 | iotabidv 6485 | . . 3 ⊢ (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥)) |
7 | 1 | rneqd 5898 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = ran 𝐺) |
8 | 7 | unieqd 4884 | . . . 4 ⊢ (𝜑 → ∪ ran 𝐹 = ∪ ran 𝐺) |
9 | 8 | pweqd 4582 | . . 3 ⊢ (𝜑 → 𝒫 ∪ ran 𝐹 = 𝒫 ∪ ran 𝐺) |
10 | 3, 6, 9 | ifbieq12d 4519 | . 2 ⊢ (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ∪ ran 𝐺)) |
11 | df-afv2 45515 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | |
12 | df-afv2 45515 | . 2 ⊢ (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ∪ ran 𝐺) | |
13 | 10, 11, 12 | 3eqtr4g 2802 | 1 ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ifcif 4491 𝒫 cpw 4565 ∪ cuni 4870 class class class wbr 5110 ran crn 5639 ℩cio 6451 defAt wdfat 45422 ''''cafv2 45514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6453 df-fun 6503 df-dfat 45425 df-afv2 45515 |
This theorem is referenced by: afv2eq1 45522 afv2eq2 45523 csbafv212g 45525 |
Copyright terms: Public domain | W3C validator |