Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2eq12d Structured version   Visualization version   GIF version

Theorem afv2eq12d 47245
Description: Equality deduction for function value, analogous to fveq12d 6829. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
afv2eq12d.1 (𝜑𝐹 = 𝐺)
afv2eq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afv2eq12d (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))

Proof of Theorem afv2eq12d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 afv2eq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afv2eq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 47156 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
4 eqidd 2732 . . . . 5 (𝜑𝑥 = 𝑥)
52, 1, 4breq123d 5105 . . . 4 (𝜑 → (𝐴𝐹𝑥𝐵𝐺𝑥))
65iotabidv 6465 . . 3 (𝜑 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐺𝑥))
71rneqd 5878 . . . . 5 (𝜑 → ran 𝐹 = ran 𝐺)
87unieqd 4872 . . . 4 (𝜑 ran 𝐹 = ran 𝐺)
98pweqd 4567 . . 3 (𝜑 → 𝒫 ran 𝐹 = 𝒫 ran 𝐺)
103, 6, 9ifbieq12d 4504 . 2 (𝜑 → if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺))
11 df-afv2 47239 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
12 df-afv2 47239 . 2 (𝐺''''𝐵) = if(𝐺 defAt 𝐵, (℩𝑥𝐵𝐺𝑥), 𝒫 ran 𝐺)
1310, 11, 123eqtr4g 2791 1 (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ifcif 4475  𝒫 cpw 4550   cuni 4859   class class class wbr 5091  ran crn 5617  cio 6435   defAt wdfat 47146  ''''cafv2 47238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-dfat 47149  df-afv2 47239
This theorem is referenced by:  afv2eq1  47246  afv2eq2  47247  csbafv212g  47249
  Copyright terms: Public domain W3C validator