Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > assaass | Structured version Visualization version GIF version |
Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
isassa.v | ⊢ 𝑉 = (Base‘𝑊) |
isassa.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isassa.b | ⊢ 𝐵 = (Base‘𝐹) |
isassa.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isassa.t | ⊢ × = (.r‘𝑊) |
Ref | Expression |
---|---|
assaass | ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isassa.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isassa.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | isassa.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
4 | isassa.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | isassa.t | . . 3 ⊢ × = (.r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | assalem 21064 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |
7 | 6 | simpld 495 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 AssAlgcasa 21057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-assa 21060 |
This theorem is referenced by: assa2ass 21070 issubassa3 21072 asclmul1 21090 assamulgscmlem2 21104 mplmon2mul 21277 matinv 21826 |
Copyright terms: Public domain | W3C validator |