| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assaass | Structured version Visualization version GIF version | ||
| Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| isassa.v | ⊢ 𝑉 = (Base‘𝑊) |
| isassa.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isassa.b | ⊢ 𝐵 = (Base‘𝐹) |
| isassa.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| isassa.t | ⊢ × = (.r‘𝑊) |
| Ref | Expression |
|---|---|
| assaass | ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassa.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | isassa.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | isassa.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | isassa.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | isassa.t | . . 3 ⊢ × = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | assalem 21804 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |
| 7 | 6 | simpld 494 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 .rcmulr 17172 Scalarcsca 17174 ·𝑠 cvsca 17175 AssAlgcasa 21797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-assa 21800 |
| This theorem is referenced by: assa2ass 21810 assa2ass2 21811 issubassa3 21813 asclmul1 21833 assamulgscmlem2 21847 mplmon2mul 22014 matinv 22602 |
| Copyright terms: Public domain | W3C validator |