![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > assaass | Structured version Visualization version GIF version |
Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
isassa.v | β’ π = (Baseβπ) |
isassa.f | β’ πΉ = (Scalarβπ) |
isassa.b | β’ π΅ = (BaseβπΉ) |
isassa.s | β’ Β· = ( Β·π βπ) |
isassa.t | β’ Γ = (.rβπ) |
Ref | Expression |
---|---|
assaass | β’ ((π β AssAlg β§ (π΄ β π΅ β§ π β π β§ π β π)) β ((π΄ Β· π) Γ π) = (π΄ Β· (π Γ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isassa.v | . . 3 β’ π = (Baseβπ) | |
2 | isassa.f | . . 3 β’ πΉ = (Scalarβπ) | |
3 | isassa.b | . . 3 β’ π΅ = (BaseβπΉ) | |
4 | isassa.s | . . 3 β’ Β· = ( Β·π βπ) | |
5 | isassa.t | . . 3 β’ Γ = (.rβπ) | |
6 | 1, 2, 3, 4, 5 | assalem 21279 | . 2 β’ ((π β AssAlg β§ (π΄ β π΅ β§ π β π β§ π β π)) β (((π΄ Β· π) Γ π) = (π΄ Β· (π Γ π)) β§ (π Γ (π΄ Β· π)) = (π΄ Β· (π Γ π)))) |
7 | 6 | simpld 496 | 1 β’ ((π β AssAlg β§ (π΄ β π΅ β§ π β π β§ π β π)) β ((π΄ Β· π) Γ π) = (π΄ Β· (π Γ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6497 (class class class)co 7358 Basecbs 17088 .rcmulr 17139 Scalarcsca 17141 Β·π cvsca 17142 AssAlgcasa 21272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5264 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-iota 6449 df-fv 6505 df-ov 7361 df-assa 21275 |
This theorem is referenced by: assa2ass 21285 issubassa3 21287 asclmul1 21305 assamulgscmlem2 21319 mplmon2mul 21493 matinv 22042 |
Copyright terms: Public domain | W3C validator |