MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaass Structured version   Visualization version   GIF version

Theorem assaass 20820
Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
assaass ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))

Proof of Theorem assaass
StepHypRef Expression
1 isassa.v . . 3 𝑉 = (Base‘𝑊)
2 isassa.f . . 3 𝐹 = (Scalar‘𝑊)
3 isassa.b . . 3 𝐵 = (Base‘𝐹)
4 isassa.s . . 3 · = ( ·𝑠𝑊)
5 isassa.t . . 3 × = (.r𝑊)
61, 2, 3, 4, 5assalem 20819 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
76simpld 498 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  AssAlgcasa 20812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-ov 7216  df-assa 20815
This theorem is referenced by:  assa2ass  20825  issubassa3  20827  asclmul1  20845  ascldimulOLD  20848  assamulgscmlem2  20860  mplmon2mul  21027  matinv  21574
  Copyright terms: Public domain W3C validator