| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclmul1 | Structured version Visualization version GIF version | ||
| Description: Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclmul1.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclmul1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclmul1.k | ⊢ 𝐾 = (Base‘𝐹) |
| asclmul1.v | ⊢ 𝑉 = (Base‘𝑊) |
| asclmul1.t | ⊢ × = (.r‘𝑊) |
| asclmul1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| asclmul1 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = (𝑅 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmul1.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑊) | |
| 2 | asclmul1.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | asclmul1.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | asclmul1.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | asclval 21765 | . . . 4 ⊢ (𝑅 ∈ 𝐾 → (𝐴‘𝑅) = (𝑅 · (1r‘𝑊))) |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴‘𝑅) = (𝑅 · (1r‘𝑊))) |
| 8 | 7 | oveq1d 7384 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = ((𝑅 · (1r‘𝑊)) × 𝑋)) |
| 9 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ AssAlg) | |
| 10 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
| 11 | assaring 21746 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 12 | 11 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ Ring) |
| 13 | asclmul1.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 14 | 13, 5 | ringidcl 20150 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
| 15 | 12, 14 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (1r‘𝑊) ∈ 𝑉) |
| 16 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 17 | asclmul1.t | . . . 4 ⊢ × = (.r‘𝑊) | |
| 18 | 13, 2, 3, 4, 17 | assaass 21743 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝑅 ∈ 𝐾 ∧ (1r‘𝑊) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · (1r‘𝑊)) × 𝑋) = (𝑅 · ((1r‘𝑊) × 𝑋))) |
| 19 | 9, 10, 15, 16, 18 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝑅 · (1r‘𝑊)) × 𝑋) = (𝑅 · ((1r‘𝑊) × 𝑋))) |
| 20 | 13, 17, 5 | ringlidm 20154 | . . . 4 ⊢ ((𝑊 ∈ Ring ∧ 𝑋 ∈ 𝑉) → ((1r‘𝑊) × 𝑋) = 𝑋) |
| 21 | 12, 16, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((1r‘𝑊) × 𝑋) = 𝑋) |
| 22 | 21 | oveq2d 7385 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · ((1r‘𝑊) × 𝑋)) = (𝑅 · 𝑋)) |
| 23 | 8, 19, 22 | 3eqtrd 2768 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = (𝑅 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 1rcur 20066 Ringcrg 20118 AssAlgcasa 21735 algSccascl 21737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20026 df-ur 20067 df-ring 20120 df-assa 21738 df-ascl 21740 |
| This theorem is referenced by: ascldimul 21773 issubassa2 21777 mplind 21953 evl1vsd 22207 evl1scvarpw 22226 evls1fpws 22232 chpscmatgsumbin 22707 fta1blem 26052 cos9thpiminply 33751 aks5lem2 42148 selvvvval 42546 asclcntr 48969 asclcom 48970 |
| Copyright terms: Public domain | W3C validator |