| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclmul1 | Structured version Visualization version GIF version | ||
| Description: Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclmul1.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclmul1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclmul1.k | ⊢ 𝐾 = (Base‘𝐹) |
| asclmul1.v | ⊢ 𝑉 = (Base‘𝑊) |
| asclmul1.t | ⊢ × = (.r‘𝑊) |
| asclmul1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| asclmul1 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = (𝑅 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmul1.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑊) | |
| 2 | asclmul1.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | asclmul1.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | asclmul1.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | asclval 21812 | . . . 4 ⊢ (𝑅 ∈ 𝐾 → (𝐴‘𝑅) = (𝑅 · (1r‘𝑊))) |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴‘𝑅) = (𝑅 · (1r‘𝑊))) |
| 8 | 7 | oveq1d 7356 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = ((𝑅 · (1r‘𝑊)) × 𝑋)) |
| 9 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ AssAlg) | |
| 10 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
| 11 | assaring 21793 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 12 | 11 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ Ring) |
| 13 | asclmul1.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 14 | 13, 5 | ringidcl 20178 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
| 15 | 12, 14 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (1r‘𝑊) ∈ 𝑉) |
| 16 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 17 | asclmul1.t | . . . 4 ⊢ × = (.r‘𝑊) | |
| 18 | 13, 2, 3, 4, 17 | assaass 21790 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝑅 ∈ 𝐾 ∧ (1r‘𝑊) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · (1r‘𝑊)) × 𝑋) = (𝑅 · ((1r‘𝑊) × 𝑋))) |
| 19 | 9, 10, 15, 16, 18 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝑅 · (1r‘𝑊)) × 𝑋) = (𝑅 · ((1r‘𝑊) × 𝑋))) |
| 20 | 13, 17, 5 | ringlidm 20182 | . . . 4 ⊢ ((𝑊 ∈ Ring ∧ 𝑋 ∈ 𝑉) → ((1r‘𝑊) × 𝑋) = 𝑋) |
| 21 | 12, 16, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((1r‘𝑊) × 𝑋) = 𝑋) |
| 22 | 21 | oveq2d 7357 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · ((1r‘𝑊) × 𝑋)) = (𝑅 · 𝑋)) |
| 23 | 8, 19, 22 | 3eqtrd 2770 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = (𝑅 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 1rcur 20094 Ringcrg 20146 AssAlgcasa 21782 algSccascl 21784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20054 df-ur 20095 df-ring 20148 df-assa 21785 df-ascl 21787 |
| This theorem is referenced by: ascldimul 21820 issubassa2 21824 mplind 22000 evl1vsd 22254 evl1scvarpw 22273 evls1fpws 22279 chpscmatgsumbin 22754 fta1blem 26098 cos9thpiminply 33793 aks5lem2 42220 selvvvval 42618 asclcntr 49039 asclcom 49040 |
| Copyright terms: Public domain | W3C validator |