MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaassr Structured version   Visualization version   GIF version

Theorem assaassr 21800
Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
assaassr ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))

Proof of Theorem assaassr
StepHypRef Expression
1 isassa.v . . 3 𝑉 = (Base‘𝑊)
2 isassa.f . . 3 𝐹 = (Scalar‘𝑊)
3 isassa.b . . 3 𝐵 = (Base‘𝐹)
4 isassa.s . . 3 · = ( ·𝑠𝑊)
5 isassa.t . . 3 × = (.r𝑊)
61, 2, 3, 4, 5assalem 21798 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
76simprd 495 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  Basecbs 17124  .rcmulr 17166  Scalarcsca 17168   ·𝑠 cvsca 17169  AssAlgcasa 21791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-ov 7357  df-assa 21794
This theorem is referenced by:  assa2ass  21804  assa2ass2  21805  issubassa3  21807  sraassab  21809  asclmul2  21828  assamulgscmlem2  21841  mplmon2mul  22007  matinv  22595  cpmadugsumlemC  22793  lactlmhm  33670
  Copyright terms: Public domain W3C validator