MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assaassr Structured version   Visualization version   GIF version

Theorem assaassr 21819
Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
assaassr ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))

Proof of Theorem assaassr
StepHypRef Expression
1 isassa.v . . 3 𝑉 = (Base‘𝑊)
2 isassa.f . . 3 𝐹 = (Scalar‘𝑊)
3 isassa.b . . 3 𝐵 = (Base‘𝐹)
4 isassa.s . . 3 · = ( ·𝑠𝑊)
5 isassa.t . . 3 × = (.r𝑊)
61, 2, 3, 4, 5assalem 21817 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
76simprd 495 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  AssAlgcasa 21810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-assa 21813
This theorem is referenced by:  assa2ass  21823  assa2ass2  21824  issubassa3  21826  sraassab  21828  asclmul2  21847  assamulgscmlem2  21860  mplmon2mul  22027  matinv  22615  cpmadugsumlemC  22813  lactlmhm  33674
  Copyright terms: Public domain W3C validator