| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > assaassr | Structured version Visualization version GIF version | ||
| Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| isassa.v | ⊢ 𝑉 = (Base‘𝑊) |
| isassa.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isassa.b | ⊢ 𝐵 = (Base‘𝐹) |
| isassa.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| isassa.t | ⊢ × = (.r‘𝑊) |
| Ref | Expression |
|---|---|
| assaassr | ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassa.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | isassa.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | isassa.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | isassa.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | isassa.t | . . 3 ⊢ × = (.r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | assalem 21877 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |
| 7 | 6 | simprd 495 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 AssAlgcasa 21870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-assa 21873 |
| This theorem is referenced by: assa2ass 21883 assa2ass2 21884 issubassa3 21886 sraassab 21888 asclmul2 21907 assamulgscmlem2 21920 mplmon2mul 22093 matinv 22683 cpmadugsumlemC 22881 lactlmhm 33685 |
| Copyright terms: Public domain | W3C validator |