![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > assaassr | Structured version Visualization version GIF version |
Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
isassa.v | ⊢ 𝑉 = (Base‘𝑊) |
isassa.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isassa.b | ⊢ 𝐵 = (Base‘𝐹) |
isassa.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isassa.t | ⊢ × = (.r‘𝑊) |
Ref | Expression |
---|---|
assaassr | ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isassa.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isassa.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | isassa.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
4 | isassa.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | isassa.t | . . 3 ⊢ × = (.r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | assalem 21900 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |
7 | 6 | simprd 495 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 AssAlgcasa 21893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-assa 21896 |
This theorem is referenced by: assa2ass 21906 assa2ass2 21907 issubassa3 21909 sraassab 21911 asclmul2 21930 assamulgscmlem2 21943 mplmon2mul 22116 matinv 22704 cpmadugsumlemC 22902 lactlmhm 33647 |
Copyright terms: Public domain | W3C validator |