Proof of Theorem matinv
Step | Hyp | Ref
| Expression |
1 | | matinv.b |
. 2
⊢ 𝐵 = (Base‘𝐴) |
2 | | eqid 2738 |
. 2
⊢
(.r‘𝐴) = (.r‘𝐴) |
3 | | eqid 2738 |
. 2
⊢
(1r‘𝐴) = (1r‘𝐴) |
4 | | matinv.u |
. 2
⊢ 𝑈 = (Unit‘𝐴) |
5 | | matinv.i |
. 2
⊢ 𝐼 = (invr‘𝐴) |
6 | | matinv.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
7 | 6, 1 | matrcl 21469 |
. . . . . 6
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
8 | 7 | simpld 494 |
. . . . 5
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
9 | 8 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑁 ∈ Fin) |
10 | | simp1 1134 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑅 ∈ CRing) |
11 | 6 | matassa 21501 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) |
12 | 9, 10, 11 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝐴 ∈ AssAlg) |
13 | | assaring 20978 |
. . 3
⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) |
14 | 12, 13 | syl 17 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝐴 ∈ Ring) |
15 | | simp2 1135 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑀 ∈ 𝐵) |
16 | | assalmod 20977 |
. . . 4
⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) |
17 | 12, 16 | syl 17 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝐴 ∈ LMod) |
18 | | crngring 19710 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
19 | 18 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑅 ∈ Ring) |
20 | | simp3 1136 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐷‘𝑀) ∈ 𝑉) |
21 | | matinv.v |
. . . . . 6
⊢ 𝑉 = (Unit‘𝑅) |
22 | | matinv.h |
. . . . . 6
⊢ 𝐻 = (invr‘𝑅) |
23 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
24 | 21, 22, 23 | ringinvcl 19833 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐻‘(𝐷‘𝑀)) ∈ (Base‘𝑅)) |
25 | 19, 20, 24 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐻‘(𝐷‘𝑀)) ∈ (Base‘𝑅)) |
26 | 6 | matsca2 21477 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴)) |
27 | 9, 10, 26 | syl2anc 583 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑅 = (Scalar‘𝐴)) |
28 | 27 | fveq2d 6760 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
29 | 25, 28 | eleqtrd 2841 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐻‘(𝐷‘𝑀)) ∈ (Base‘(Scalar‘𝐴))) |
30 | | matinv.j |
. . . . . 6
⊢ 𝐽 = (𝑁 maAdju 𝑅) |
31 | 6, 30, 1 | maduf 21698 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
32 | 31 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝐽:𝐵⟶𝐵) |
33 | 32, 15 | ffvelrnd 6944 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐽‘𝑀) ∈ 𝐵) |
34 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
35 | | matinv.t |
. . . 4
⊢ ∙ = (
·𝑠 ‘𝐴) |
36 | | eqid 2738 |
. . . 4
⊢
(Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) |
37 | 1, 34, 35, 36 | lmodvscl 20055 |
. . 3
⊢ ((𝐴 ∈ LMod ∧ (𝐻‘(𝐷‘𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐽‘𝑀) ∈ 𝐵) → ((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀)) ∈ 𝐵) |
38 | 17, 29, 33, 37 | syl3anc 1369 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀)) ∈ 𝐵) |
39 | 1, 34, 36, 35, 2 | assaassr 20976 |
. . . 4
⊢ ((𝐴 ∈ AssAlg ∧ ((𝐻‘(𝐷‘𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑀 ∈ 𝐵 ∧ (𝐽‘𝑀) ∈ 𝐵)) → (𝑀(.r‘𝐴)((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀))) = ((𝐻‘(𝐷‘𝑀)) ∙ (𝑀(.r‘𝐴)(𝐽‘𝑀)))) |
40 | 12, 29, 15, 33, 39 | syl13anc 1370 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀(.r‘𝐴)((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀))) = ((𝐻‘(𝐷‘𝑀)) ∙ (𝑀(.r‘𝐴)(𝐽‘𝑀)))) |
41 | | matinv.d |
. . . . . 6
⊢ 𝐷 = (𝑁 maDet 𝑅) |
42 | 6, 1, 30, 41, 3, 2, 35 | madurid 21701 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing) → (𝑀(.r‘𝐴)(𝐽‘𝑀)) = ((𝐷‘𝑀) ∙
(1r‘𝐴))) |
43 | 15, 10, 42 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀(.r‘𝐴)(𝐽‘𝑀)) = ((𝐷‘𝑀) ∙
(1r‘𝐴))) |
44 | 43 | oveq2d 7271 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀)) ∙ (𝑀(.r‘𝐴)(𝐽‘𝑀))) = ((𝐻‘(𝐷‘𝑀)) ∙ ((𝐷‘𝑀) ∙
(1r‘𝐴)))) |
45 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
46 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
47 | 21, 22, 45, 46 | unitlinv 19834 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀))(.r‘𝑅)(𝐷‘𝑀)) = (1r‘𝑅)) |
48 | 19, 20, 47 | syl2anc 583 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀))(.r‘𝑅)(𝐷‘𝑀)) = (1r‘𝑅)) |
49 | 27 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (.r‘𝑅) =
(.r‘(Scalar‘𝐴))) |
50 | 49 | oveqd 7272 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀))(.r‘𝑅)(𝐷‘𝑀)) = ((𝐻‘(𝐷‘𝑀))(.r‘(Scalar‘𝐴))(𝐷‘𝑀))) |
51 | 27 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (1r‘𝑅) =
(1r‘(Scalar‘𝐴))) |
52 | 48, 50, 51 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀))(.r‘(Scalar‘𝐴))(𝐷‘𝑀)) =
(1r‘(Scalar‘𝐴))) |
53 | 52 | oveq1d 7270 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (((𝐻‘(𝐷‘𝑀))(.r‘(Scalar‘𝐴))(𝐷‘𝑀)) ∙
(1r‘𝐴)) =
((1r‘(Scalar‘𝐴)) ∙
(1r‘𝐴))) |
54 | 23, 21 | unitcl 19816 |
. . . . . . 7
⊢ ((𝐷‘𝑀) ∈ 𝑉 → (𝐷‘𝑀) ∈ (Base‘𝑅)) |
55 | 54 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐷‘𝑀) ∈ (Base‘𝑅)) |
56 | 55, 28 | eleqtrd 2841 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝐷‘𝑀) ∈ (Base‘(Scalar‘𝐴))) |
57 | 1, 3 | ringidcl 19722 |
. . . . . 6
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ 𝐵) |
58 | 14, 57 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (1r‘𝐴) ∈ 𝐵) |
59 | | eqid 2738 |
. . . . . 6
⊢
(.r‘(Scalar‘𝐴)) =
(.r‘(Scalar‘𝐴)) |
60 | 1, 34, 35, 36, 59 | lmodvsass 20063 |
. . . . 5
⊢ ((𝐴 ∈ LMod ∧ ((𝐻‘(𝐷‘𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐷‘𝑀) ∈ (Base‘(Scalar‘𝐴)) ∧
(1r‘𝐴)
∈ 𝐵)) → (((𝐻‘(𝐷‘𝑀))(.r‘(Scalar‘𝐴))(𝐷‘𝑀)) ∙
(1r‘𝐴)) =
((𝐻‘(𝐷‘𝑀)) ∙ ((𝐷‘𝑀) ∙
(1r‘𝐴)))) |
61 | 17, 29, 56, 58, 60 | syl13anc 1370 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (((𝐻‘(𝐷‘𝑀))(.r‘(Scalar‘𝐴))(𝐷‘𝑀)) ∙
(1r‘𝐴)) =
((𝐻‘(𝐷‘𝑀)) ∙ ((𝐷‘𝑀) ∙
(1r‘𝐴)))) |
62 | | eqid 2738 |
. . . . . 6
⊢
(1r‘(Scalar‘𝐴)) =
(1r‘(Scalar‘𝐴)) |
63 | 1, 34, 35, 62 | lmodvs1 20066 |
. . . . 5
⊢ ((𝐴 ∈ LMod ∧
(1r‘𝐴)
∈ 𝐵) →
((1r‘(Scalar‘𝐴)) ∙
(1r‘𝐴)) =
(1r‘𝐴)) |
64 | 17, 58, 63 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) →
((1r‘(Scalar‘𝐴)) ∙
(1r‘𝐴)) =
(1r‘𝐴)) |
65 | 53, 61, 64 | 3eqtr3d 2786 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀)) ∙ ((𝐷‘𝑀) ∙
(1r‘𝐴))) =
(1r‘𝐴)) |
66 | 40, 44, 65 | 3eqtrd 2782 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀(.r‘𝐴)((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀))) = (1r‘𝐴)) |
67 | 1, 34, 36, 35, 2 | assaass 20975 |
. . . 4
⊢ ((𝐴 ∈ AssAlg ∧ ((𝐻‘(𝐷‘𝑀)) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐽‘𝑀) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵)) → (((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀))(.r‘𝐴)𝑀) = ((𝐻‘(𝐷‘𝑀)) ∙ ((𝐽‘𝑀)(.r‘𝐴)𝑀))) |
68 | 12, 29, 33, 15, 67 | syl13anc 1370 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀))(.r‘𝐴)𝑀) = ((𝐻‘(𝐷‘𝑀)) ∙ ((𝐽‘𝑀)(.r‘𝐴)𝑀))) |
69 | 6, 1, 30, 41, 3, 2, 35 | madulid 21702 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing) → ((𝐽‘𝑀)(.r‘𝐴)𝑀) = ((𝐷‘𝑀) ∙
(1r‘𝐴))) |
70 | 15, 10, 69 | syl2anc 583 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐽‘𝑀)(.r‘𝐴)𝑀) = ((𝐷‘𝑀) ∙
(1r‘𝐴))) |
71 | 70 | oveq2d 7271 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → ((𝐻‘(𝐷‘𝑀)) ∙ ((𝐽‘𝑀)(.r‘𝐴)𝑀)) = ((𝐻‘(𝐷‘𝑀)) ∙ ((𝐷‘𝑀) ∙
(1r‘𝐴)))) |
72 | 68, 71, 65 | 3eqtrd 2782 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀))(.r‘𝐴)𝑀) = (1r‘𝐴)) |
73 | 1, 2, 3, 4, 5, 14,
15, 38, 66, 72 | invrvald 21733 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀 ∈ 𝑈 ∧ (𝐼‘𝑀) = ((𝐻‘(𝐷‘𝑀)) ∙ (𝐽‘𝑀)))) |