Step | Hyp | Ref
| Expression |
1 | | matinv.b |
. 2
β’ π΅ = (Baseβπ΄) |
2 | | eqid 2733 |
. 2
β’
(.rβπ΄) = (.rβπ΄) |
3 | | eqid 2733 |
. 2
β’
(1rβπ΄) = (1rβπ΄) |
4 | | matinv.u |
. 2
β’ π = (Unitβπ΄) |
5 | | matinv.i |
. 2
β’ πΌ = (invrβπ΄) |
6 | | matinv.a |
. . . . . . 7
β’ π΄ = (π Mat π
) |
7 | 6, 1 | matrcl 21894 |
. . . . . 6
β’ (π β π΅ β (π β Fin β§ π
β V)) |
8 | 7 | simpld 496 |
. . . . 5
β’ (π β π΅ β π β Fin) |
9 | 8 | 3ad2ant2 1135 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π β Fin) |
10 | | simp1 1137 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π
β CRing) |
11 | 6 | matassa 21928 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β π΄ β AssAlg) |
12 | 9, 10, 11 | syl2anc 585 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π΄ β AssAlg) |
13 | | assaring 21400 |
. . 3
β’ (π΄ β AssAlg β π΄ β Ring) |
14 | 12, 13 | syl 17 |
. 2
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π΄ β Ring) |
15 | | simp2 1138 |
. 2
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π β π΅) |
16 | | assalmod 21399 |
. . . 4
β’ (π΄ β AssAlg β π΄ β LMod) |
17 | 12, 16 | syl 17 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π΄ β LMod) |
18 | | crngring 20059 |
. . . . . 6
β’ (π
β CRing β π
β Ring) |
19 | 18 | 3ad2ant1 1134 |
. . . . 5
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π
β Ring) |
20 | | simp3 1139 |
. . . . 5
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π·βπ) β π) |
21 | | matinv.v |
. . . . . 6
β’ π = (Unitβπ
) |
22 | | matinv.h |
. . . . . 6
β’ π» = (invrβπ
) |
23 | | eqid 2733 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
24 | 21, 22, 23 | ringinvcl 20195 |
. . . . 5
β’ ((π
β Ring β§ (π·βπ) β π) β (π»β(π·βπ)) β (Baseβπ
)) |
25 | 19, 20, 24 | syl2anc 585 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π»β(π·βπ)) β (Baseβπ
)) |
26 | 6 | matsca2 21904 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β π
= (Scalarβπ΄)) |
27 | 9, 10, 26 | syl2anc 585 |
. . . . 5
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π
= (Scalarβπ΄)) |
28 | 27 | fveq2d 6892 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (Baseβπ
) = (Baseβ(Scalarβπ΄))) |
29 | 25, 28 | eleqtrd 2836 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π»β(π·βπ)) β (Baseβ(Scalarβπ΄))) |
30 | | matinv.j |
. . . . . 6
β’ π½ = (π maAdju π
) |
31 | 6, 30, 1 | maduf 22125 |
. . . . 5
β’ (π
β CRing β π½:π΅βΆπ΅) |
32 | 31 | 3ad2ant1 1134 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π½:π΅βΆπ΅) |
33 | 32, 15 | ffvelcdmd 7083 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π½βπ) β π΅) |
34 | | eqid 2733 |
. . . 4
β’
(Scalarβπ΄) =
(Scalarβπ΄) |
35 | | matinv.t |
. . . 4
β’ β = (
Β·π βπ΄) |
36 | | eqid 2733 |
. . . 4
β’
(Baseβ(Scalarβπ΄)) = (Baseβ(Scalarβπ΄)) |
37 | 1, 34, 35, 36 | lmodvscl 20477 |
. . 3
β’ ((π΄ β LMod β§ (π»β(π·βπ)) β (Baseβ(Scalarβπ΄)) β§ (π½βπ) β π΅) β ((π»β(π·βπ)) β (π½βπ)) β π΅) |
38 | 17, 29, 33, 37 | syl3anc 1372 |
. 2
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ)) β (π½βπ)) β π΅) |
39 | 1, 34, 36, 35, 2 | assaassr 21398 |
. . . 4
β’ ((π΄ β AssAlg β§ ((π»β(π·βπ)) β (Baseβ(Scalarβπ΄)) β§ π β π΅ β§ (π½βπ) β π΅)) β (π(.rβπ΄)((π»β(π·βπ)) β (π½βπ))) = ((π»β(π·βπ)) β (π(.rβπ΄)(π½βπ)))) |
40 | 12, 29, 15, 33, 39 | syl13anc 1373 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π(.rβπ΄)((π»β(π·βπ)) β (π½βπ))) = ((π»β(π·βπ)) β (π(.rβπ΄)(π½βπ)))) |
41 | | matinv.d |
. . . . . 6
β’ π· = (π maDet π
) |
42 | 6, 1, 30, 41, 3, 2, 35 | madurid 22128 |
. . . . 5
β’ ((π β π΅ β§ π
β CRing) β (π(.rβπ΄)(π½βπ)) = ((π·βπ) β
(1rβπ΄))) |
43 | 15, 10, 42 | syl2anc 585 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π(.rβπ΄)(π½βπ)) = ((π·βπ) β
(1rβπ΄))) |
44 | 43 | oveq2d 7420 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ)) β (π(.rβπ΄)(π½βπ))) = ((π»β(π·βπ)) β ((π·βπ) β
(1rβπ΄)))) |
45 | | eqid 2733 |
. . . . . . . 8
β’
(.rβπ
) = (.rβπ
) |
46 | | eqid 2733 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
47 | 21, 22, 45, 46 | unitlinv 20196 |
. . . . . . 7
β’ ((π
β Ring β§ (π·βπ) β π) β ((π»β(π·βπ))(.rβπ
)(π·βπ)) = (1rβπ
)) |
48 | 19, 20, 47 | syl2anc 585 |
. . . . . 6
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ))(.rβπ
)(π·βπ)) = (1rβπ
)) |
49 | 27 | fveq2d 6892 |
. . . . . . 7
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (.rβπ
) =
(.rβ(Scalarβπ΄))) |
50 | 49 | oveqd 7421 |
. . . . . 6
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ))(.rβπ
)(π·βπ)) = ((π»β(π·βπ))(.rβ(Scalarβπ΄))(π·βπ))) |
51 | 27 | fveq2d 6892 |
. . . . . 6
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (1rβπ
) =
(1rβ(Scalarβπ΄))) |
52 | 48, 50, 51 | 3eqtr3d 2781 |
. . . . 5
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ))(.rβ(Scalarβπ΄))(π·βπ)) =
(1rβ(Scalarβπ΄))) |
53 | 52 | oveq1d 7419 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (((π»β(π·βπ))(.rβ(Scalarβπ΄))(π·βπ)) β
(1rβπ΄)) =
((1rβ(Scalarβπ΄)) β
(1rβπ΄))) |
54 | 23, 21 | unitcl 20178 |
. . . . . . 7
β’ ((π·βπ) β π β (π·βπ) β (Baseβπ
)) |
55 | 54 | 3ad2ant3 1136 |
. . . . . 6
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π·βπ) β (Baseβπ
)) |
56 | 55, 28 | eleqtrd 2836 |
. . . . 5
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π·βπ) β (Baseβ(Scalarβπ΄))) |
57 | 1, 3 | ringidcl 20073 |
. . . . . 6
β’ (π΄ β Ring β
(1rβπ΄)
β π΅) |
58 | 14, 57 | syl 17 |
. . . . 5
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (1rβπ΄) β π΅) |
59 | | eqid 2733 |
. . . . . 6
β’
(.rβ(Scalarβπ΄)) =
(.rβ(Scalarβπ΄)) |
60 | 1, 34, 35, 36, 59 | lmodvsass 20485 |
. . . . 5
β’ ((π΄ β LMod β§ ((π»β(π·βπ)) β (Baseβ(Scalarβπ΄)) β§ (π·βπ) β (Baseβ(Scalarβπ΄)) β§
(1rβπ΄)
β π΅)) β (((π»β(π·βπ))(.rβ(Scalarβπ΄))(π·βπ)) β
(1rβπ΄)) =
((π»β(π·βπ)) β ((π·βπ) β
(1rβπ΄)))) |
61 | 17, 29, 56, 58, 60 | syl13anc 1373 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (((π»β(π·βπ))(.rβ(Scalarβπ΄))(π·βπ)) β
(1rβπ΄)) =
((π»β(π·βπ)) β ((π·βπ) β
(1rβπ΄)))) |
62 | | eqid 2733 |
. . . . . 6
β’
(1rβ(Scalarβπ΄)) =
(1rβ(Scalarβπ΄)) |
63 | 1, 34, 35, 62 | lmodvs1 20488 |
. . . . 5
β’ ((π΄ β LMod β§
(1rβπ΄)
β π΅) β
((1rβ(Scalarβπ΄)) β
(1rβπ΄)) =
(1rβπ΄)) |
64 | 17, 58, 63 | syl2anc 585 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β
((1rβ(Scalarβπ΄)) β
(1rβπ΄)) =
(1rβπ΄)) |
65 | 53, 61, 64 | 3eqtr3d 2781 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ)) β ((π·βπ) β
(1rβπ΄))) =
(1rβπ΄)) |
66 | 40, 44, 65 | 3eqtrd 2777 |
. 2
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π(.rβπ΄)((π»β(π·βπ)) β (π½βπ))) = (1rβπ΄)) |
67 | 1, 34, 36, 35, 2 | assaass 21397 |
. . . 4
β’ ((π΄ β AssAlg β§ ((π»β(π·βπ)) β (Baseβ(Scalarβπ΄)) β§ (π½βπ) β π΅ β§ π β π΅)) β (((π»β(π·βπ)) β (π½βπ))(.rβπ΄)π) = ((π»β(π·βπ)) β ((π½βπ)(.rβπ΄)π))) |
68 | 12, 29, 33, 15, 67 | syl13anc 1373 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (((π»β(π·βπ)) β (π½βπ))(.rβπ΄)π) = ((π»β(π·βπ)) β ((π½βπ)(.rβπ΄)π))) |
69 | 6, 1, 30, 41, 3, 2, 35 | madulid 22129 |
. . . . 5
β’ ((π β π΅ β§ π
β CRing) β ((π½βπ)(.rβπ΄)π) = ((π·βπ) β
(1rβπ΄))) |
70 | 15, 10, 69 | syl2anc 585 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π½βπ)(.rβπ΄)π) = ((π·βπ) β
(1rβπ΄))) |
71 | 70 | oveq2d 7420 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β ((π»β(π·βπ)) β ((π½βπ)(.rβπ΄)π)) = ((π»β(π·βπ)) β ((π·βπ) β
(1rβπ΄)))) |
72 | 68, 71, 65 | 3eqtrd 2777 |
. 2
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (((π»β(π·βπ)) β (π½βπ))(.rβπ΄)π) = (1rβπ΄)) |
73 | 1, 2, 3, 4, 5, 14,
15, 38, 66, 72 | invrvald 22160 |
1
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π β π β§ (πΌβπ) = ((π»β(π·βπ)) β (π½βπ)))) |