Proof of Theorem mplmon2mul
| Step | Hyp | Ref
| Expression |
| 1 | | mplmon2cl.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 2 | | mplmon2mul.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 3 | | mplmon2cl.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 4 | 3 | mplassa 22042 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) |
| 5 | 1, 2, 4 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ AssAlg) |
| 6 | | mplmon2mul.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐶) |
| 7 | | mplmon2cl.c |
. . . . . 6
⊢ 𝐶 = (Base‘𝑅) |
| 8 | 3, 1, 2 | mplsca 22033 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 9 | 8 | fveq2d 6910 |
. . . . . 6
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
| 10 | 7, 9 | eqtrid 2789 |
. . . . 5
⊢ (𝜑 → 𝐶 = (Base‘(Scalar‘𝑃))) |
| 11 | 6, 10 | eleqtrd 2843 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Base‘(Scalar‘𝑃))) |
| 12 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 13 | | mplmon2cl.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
| 14 | | eqid 2737 |
. . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 15 | | mplmon2cl.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 16 | | crngring 20242 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 17 | 2, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 18 | | mplmon2mul.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 19 | 3, 12, 13, 14, 15, 1, 17, 18 | mplmon 22053 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) |
| 20 | | assalmod 21880 |
. . . . . 6
⊢ (𝑃 ∈ AssAlg → 𝑃 ∈ LMod) |
| 21 | 5, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ LMod) |
| 22 | | mplmon2mul.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| 23 | 22, 10 | eleqtrd 2843 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (Base‘(Scalar‘𝑃))) |
| 24 | | mplmon2mul.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| 25 | 3, 12, 13, 14, 15, 1, 17, 24 | mplmon 22053 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) |
| 26 | | eqid 2737 |
. . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
| 27 | | eqid 2737 |
. . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 28 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
| 29 | 12, 26, 27, 28 | lmodvscl 20876 |
. . . . 5
⊢ ((𝑃 ∈ LMod ∧ 𝐺 ∈
(Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) →
(𝐺(
·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) ∈
(Base‘𝑃)) |
| 30 | 21, 23, 25, 29 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) ∈
(Base‘𝑃)) |
| 31 | | mplmon2mul.t |
. . . . 5
⊢ ∙ =
(.r‘𝑃) |
| 32 | 12, 26, 28, 27, 31 | assaass 21878 |
. . . 4
⊢ ((𝑃 ∈ AssAlg ∧ (𝐹 ∈
(Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∈
(Base‘𝑃) ∧ (𝐺(
·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) ∈
(Base‘𝑃))) →
((𝐹(
·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐹( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))))) |
| 33 | 5, 11, 19, 30, 32 | syl13anc 1374 |
. . 3
⊢ (𝜑 → ((𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐹( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))))) |
| 34 | 12, 26, 28, 27, 31 | assaassr 21879 |
. . . . 5
⊢ ((𝑃 ∈ AssAlg ∧ (𝐺 ∈
(Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∈
(Base‘𝑃) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )) ∈
(Base‘𝑃))) →
((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) |
| 35 | 5, 23, 19, 25, 34 | syl13anc 1374 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) |
| 36 | 35 | oveq2d 7447 |
. . 3
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))))) |
| 37 | 3, 12, 13, 14, 15, 1, 17, 18, 31, 24 | mplmonmul 22054 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) |
| 38 | 37 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → (𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
| 39 | 38 | oveq2d 7447 |
. . . 4
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))))) |
| 40 | 15 | psrbagaddcl 21944 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋 ∘f + 𝑌) ∈ 𝐷) |
| 41 | 18, 24, 40 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ 𝐷) |
| 42 | 3, 12, 13, 14, 15, 1, 17, 41 | mplmon 22053 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) |
| 43 | | eqid 2737 |
. . . . . 6
⊢
(.r‘(Scalar‘𝑃)) =
(.r‘(Scalar‘𝑃)) |
| 44 | 12, 26, 27, 28, 43 | lmodvsass 20885 |
. . . . 5
⊢ ((𝑃 ∈ LMod ∧ (𝐹 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝐺 ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )) ∈
(Base‘𝑃))) →
((𝐹(.r‘(Scalar‘𝑃))𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))))) |
| 45 | 21, 11, 23, 42, 44 | syl13anc 1374 |
. . . 4
⊢ (𝜑 → ((𝐹(.r‘(Scalar‘𝑃))𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))))) |
| 46 | | mplmon2mul.u |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
| 47 | 8 | fveq2d 6910 |
. . . . . . 7
⊢ (𝜑 → (.r‘𝑅) =
(.r‘(Scalar‘𝑃))) |
| 48 | 46, 47 | eqtr2id 2790 |
. . . . . 6
⊢ (𝜑 →
(.r‘(Scalar‘𝑃)) = · ) |
| 49 | 48 | oveqd 7448 |
. . . . 5
⊢ (𝜑 → (𝐹(.r‘(Scalar‘𝑃))𝐺) = (𝐹 · 𝐺)) |
| 50 | 49 | oveq1d 7446 |
. . . 4
⊢ (𝜑 → ((𝐹(.r‘(Scalar‘𝑃))𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
| 51 | 39, 45, 50 | 3eqtr2d 2783 |
. . 3
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) = ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
| 52 | 33, 36, 51 | 3eqtrd 2781 |
. 2
⊢ (𝜑 → ((𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
| 53 | 3, 27, 15, 14, 13, 7, 1, 17, 18, 6 | mplmon2 22085 |
. . 3
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 ))) |
| 54 | 3, 27, 15, 14, 13, 7, 1, 17, 24, 22 | mplmon2 22085 |
. . 3
⊢ (𝜑 → (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) |
| 55 | 53, 54 | oveq12d 7449 |
. 2
⊢ (𝜑 → ((𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 )))) |
| 56 | 7, 46 | ringcl 20247 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶 ∧ 𝐺 ∈ 𝐶) → (𝐹 · 𝐺) ∈ 𝐶) |
| 57 | 17, 6, 22, 56 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐶) |
| 58 | 3, 27, 15, 14, 13, 7, 1, 17, 41, 57 | mplmon2 22085 |
. 2
⊢ (𝜑 → ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (𝐹 · 𝐺), 0 ))) |
| 59 | 52, 55, 58 | 3eqtr3d 2785 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (𝐹 · 𝐺), 0 ))) |