Step | Hyp | Ref
| Expression |
1 | | mplmon2cl.i |
. . . . 5
β’ (π β πΌ β π) |
2 | | mplmon2mul.r |
. . . . 5
β’ (π β π
β CRing) |
3 | | mplmon2cl.p |
. . . . . 6
β’ π = (πΌ mPoly π
) |
4 | 3 | mplassa 21572 |
. . . . 5
β’ ((πΌ β π β§ π
β CRing) β π β AssAlg) |
5 | 1, 2, 4 | syl2anc 584 |
. . . 4
β’ (π β π β AssAlg) |
6 | | mplmon2mul.f |
. . . . 5
β’ (π β πΉ β πΆ) |
7 | | mplmon2cl.c |
. . . . . 6
β’ πΆ = (Baseβπ
) |
8 | 3, 1, 2 | mplsca 21563 |
. . . . . . 7
β’ (π β π
= (Scalarβπ)) |
9 | 8 | fveq2d 6892 |
. . . . . 6
β’ (π β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
10 | 7, 9 | eqtrid 2784 |
. . . . 5
β’ (π β πΆ = (Baseβ(Scalarβπ))) |
11 | 6, 10 | eleqtrd 2835 |
. . . 4
β’ (π β πΉ β (Baseβ(Scalarβπ))) |
12 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
13 | | mplmon2cl.z |
. . . . 5
β’ 0 =
(0gβπ
) |
14 | | eqid 2732 |
. . . . 5
β’
(1rβπ
) = (1rβπ
) |
15 | | mplmon2cl.d |
. . . . 5
β’ π· = {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin} |
16 | | crngring 20061 |
. . . . . 6
β’ (π
β CRing β π
β Ring) |
17 | 2, 16 | syl 17 |
. . . . 5
β’ (π β π
β Ring) |
18 | | mplmon2mul.x |
. . . . 5
β’ (π β π β π·) |
19 | 3, 12, 13, 14, 15, 1, 17, 18 | mplmon 21581 |
. . . 4
β’ (π β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β
(Baseβπ)) |
20 | | assalmod 21406 |
. . . . . 6
β’ (π β AssAlg β π β LMod) |
21 | 5, 20 | syl 17 |
. . . . 5
β’ (π β π β LMod) |
22 | | mplmon2mul.g |
. . . . . 6
β’ (π β πΊ β πΆ) |
23 | 22, 10 | eleqtrd 2835 |
. . . . 5
β’ (π β πΊ β (Baseβ(Scalarβπ))) |
24 | | mplmon2mul.y |
. . . . . 6
β’ (π β π β π·) |
25 | 3, 12, 13, 14, 15, 1, 17, 24 | mplmon 21581 |
. . . . 5
β’ (π β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β
(Baseβπ)) |
26 | | eqid 2732 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
27 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
28 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
29 | 12, 26, 27, 28 | lmodvscl 20481 |
. . . . 5
β’ ((π β LMod β§ πΊ β
(Baseβ(Scalarβπ)) β§ (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β
(Baseβπ)) β
(πΊ(
Β·π βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β
(Baseβπ)) |
30 | 21, 23, 25, 29 | syl3anc 1371 |
. . . 4
β’ (π β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β
(Baseβπ)) |
31 | | mplmon2mul.t |
. . . . 5
β’ β =
(.rβπ) |
32 | 12, 26, 28, 27, 31 | assaass 21404 |
. . . 4
β’ ((π β AssAlg β§ (πΉ β
(Baseβ(Scalarβπ)) β§ (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β
(Baseβπ) β§ (πΊ(
Β·π βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β
(Baseβπ))) β
((πΉ(
Β·π βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = (πΉ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))))) |
33 | 5, 11, 19, 30, 32 | syl13anc 1372 |
. . 3
β’ (π β ((πΉ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = (πΉ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))))) |
34 | 12, 26, 28, 27, 31 | assaassr 21405 |
. . . . 5
β’ ((π β AssAlg β§ (πΊ β
(Baseβ(Scalarβπ)) β§ (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β
(Baseβπ) β§ (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β
(Baseβπ))) β
((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = (πΊ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))))) |
35 | 5, 23, 19, 25, 34 | syl13anc 1372 |
. . . 4
β’ (π β ((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = (πΊ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))))) |
36 | 35 | oveq2d 7421 |
. . 3
β’ (π β (πΉ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))))) = (πΉ( Β·π
βπ)(πΊ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))))) |
37 | 3, 12, 13, 14, 15, 1, 17, 18, 31, 24 | mplmonmul 21582 |
. . . . . 6
β’ (π β ((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) = (π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))) |
38 | 37 | oveq2d 7421 |
. . . . 5
β’ (π β (πΊ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 )))) |
39 | 38 | oveq2d 7421 |
. . . 4
β’ (π β (πΉ( Β·π
βπ)(πΊ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))))) = (πΉ( Β·π
βπ)(πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))))) |
40 | 15 | psrbagaddcl 21472 |
. . . . . . 7
β’ ((π β π· β§ π β π·) β (π βf + π) β π·) |
41 | 18, 24, 40 | syl2anc 584 |
. . . . . 6
β’ (π β (π βf + π) β π·) |
42 | 3, 12, 13, 14, 15, 1, 17, 41 | mplmon 21581 |
. . . . 5
β’ (π β (π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 )) β
(Baseβπ)) |
43 | | eqid 2732 |
. . . . . 6
β’
(.rβ(Scalarβπ)) =
(.rβ(Scalarβπ)) |
44 | 12, 26, 27, 28, 43 | lmodvsass 20489 |
. . . . 5
β’ ((π β LMod β§ (πΉ β
(Baseβ(Scalarβπ)) β§ πΊ β (Baseβ(Scalarβπ)) β§ (π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 )) β
(Baseβπ))) β
((πΉ(.rβ(Scalarβπ))πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))) = (πΉ( Β·π
βπ)(πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))))) |
45 | 21, 11, 23, 42, 44 | syl13anc 1372 |
. . . 4
β’ (π β ((πΉ(.rβ(Scalarβπ))πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))) = (πΉ( Β·π
βπ)(πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))))) |
46 | | mplmon2mul.u |
. . . . . . 7
β’ Β· =
(.rβπ
) |
47 | 8 | fveq2d 6892 |
. . . . . . 7
β’ (π β (.rβπ
) =
(.rβ(Scalarβπ))) |
48 | 46, 47 | eqtr2id 2785 |
. . . . . 6
β’ (π β
(.rβ(Scalarβπ)) = Β· ) |
49 | 48 | oveqd 7422 |
. . . . 5
β’ (π β (πΉ(.rβ(Scalarβπ))πΊ) = (πΉ Β· πΊ)) |
50 | 49 | oveq1d 7420 |
. . . 4
β’ (π β ((πΉ(.rβ(Scalarβπ))πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))) = ((πΉ Β· πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 )))) |
51 | 39, 45, 50 | 3eqtr2d 2778 |
. . 3
β’ (π β (πΉ( Β·π
βπ)(πΊ( Β·π
βπ)((π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )) β (π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))))) = ((πΉ Β· πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 )))) |
52 | 33, 36, 51 | 3eqtrd 2776 |
. 2
β’ (π β ((πΉ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = ((πΉ Β· πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 )))) |
53 | 3, 27, 15, 14, 13, 7, 1, 17, 18, 6 | mplmon2 21613 |
. . 3
β’ (π β (πΉ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) = (π¦ β π· β¦ if(π¦ = π, πΉ, 0 ))) |
54 | 3, 27, 15, 14, 13, 7, 1, 17, 24, 22 | mplmon2 21613 |
. . 3
β’ (π β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) = (π¦ β π· β¦ if(π¦ = π, πΊ, 0 ))) |
55 | 53, 54 | oveq12d 7423 |
. 2
β’ (π β ((πΉ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 ))) β (πΊ( Β·π
βπ)(π¦ β π· β¦ if(π¦ = π, (1rβπ
), 0 )))) = ((π¦ β π· β¦ if(π¦ = π, πΉ, 0 )) β (π¦ β π· β¦ if(π¦ = π, πΊ, 0 )))) |
56 | 7, 46 | ringcl 20066 |
. . . 4
β’ ((π
β Ring β§ πΉ β πΆ β§ πΊ β πΆ) β (πΉ Β· πΊ) β πΆ) |
57 | 17, 6, 22, 56 | syl3anc 1371 |
. . 3
β’ (π β (πΉ Β· πΊ) β πΆ) |
58 | 3, 27, 15, 14, 13, 7, 1, 17, 41, 57 | mplmon2 21613 |
. 2
β’ (π β ((πΉ Β· πΊ)( Β·π
βπ)(π¦ β π· β¦ if(π¦ = (π βf + π), (1rβπ
), 0 ))) = (π¦ β π· β¦ if(π¦ = (π βf + π), (πΉ Β· πΊ), 0 ))) |
59 | 52, 55, 58 | 3eqtr3d 2780 |
1
β’ (π β ((π¦ β π· β¦ if(π¦ = π, πΉ, 0 )) β (π¦ β π· β¦ if(π¦ = π, πΊ, 0 ))) = (π¦ β π· β¦ if(π¦ = (π βf + π), (πΉ Β· πΊ), 0 ))) |