Proof of Theorem mplmon2mul
Step | Hyp | Ref
| Expression |
1 | | mplmon2cl.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
2 | | mplmon2mul.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
3 | | mplmon2cl.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
4 | 3 | mplassa 21137 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) |
5 | 1, 2, 4 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ AssAlg) |
6 | | mplmon2mul.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐶) |
7 | | mplmon2cl.c |
. . . . . 6
⊢ 𝐶 = (Base‘𝑅) |
8 | 3, 1, 2 | mplsca 21127 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
9 | 8 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
10 | 7, 9 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 𝐶 = (Base‘(Scalar‘𝑃))) |
11 | 6, 10 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Base‘(Scalar‘𝑃))) |
12 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
13 | | mplmon2cl.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
14 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) |
15 | | mplmon2cl.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
16 | | crngring 19710 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
17 | 2, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
18 | | mplmon2mul.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
19 | 3, 12, 13, 14, 15, 1, 17, 18 | mplmon 21146 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) |
20 | | assalmod 20977 |
. . . . . 6
⊢ (𝑃 ∈ AssAlg → 𝑃 ∈ LMod) |
21 | 5, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ LMod) |
22 | | mplmon2mul.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐶) |
23 | 22, 10 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (Base‘(Scalar‘𝑃))) |
24 | | mplmon2mul.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
25 | 3, 12, 13, 14, 15, 1, 17, 24 | mplmon 21146 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) |
26 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
27 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
28 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
29 | 12, 26, 27, 28 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑃 ∈ LMod ∧ 𝐺 ∈
(Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) →
(𝐺(
·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) ∈
(Base‘𝑃)) |
30 | 21, 23, 25, 29 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) ∈
(Base‘𝑃)) |
31 | | mplmon2mul.t |
. . . . 5
⊢ ∙ =
(.r‘𝑃) |
32 | 12, 26, 28, 27, 31 | assaass 20975 |
. . . 4
⊢ ((𝑃 ∈ AssAlg ∧ (𝐹 ∈
(Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∈
(Base‘𝑃) ∧ (𝐺(
·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) ∈
(Base‘𝑃))) →
((𝐹(
·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐹( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))))) |
33 | 5, 11, 19, 30, 32 | syl13anc 1370 |
. . 3
⊢ (𝜑 → ((𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐹( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))))) |
34 | 12, 26, 28, 27, 31 | assaassr 20976 |
. . . . 5
⊢ ((𝑃 ∈ AssAlg ∧ (𝐺 ∈
(Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∈
(Base‘𝑃) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )) ∈
(Base‘𝑃))) →
((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) |
35 | 5, 23, 19, 25, 34 | syl13anc 1370 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) |
36 | 35 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))))) |
37 | 3, 12, 13, 14, 15, 1, 17, 18, 31, 24 | mplmonmul 21147 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) |
38 | 37 | oveq2d 7271 |
. . . . 5
⊢ (𝜑 → (𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
39 | 38 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))))) |
40 | 15 | psrbagaddcl 21041 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋 ∘f + 𝑌) ∈ 𝐷) |
41 | 18, 24, 40 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ 𝐷) |
42 | 3, 12, 13, 14, 15, 1, 17, 41 | mplmon 21146 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )) ∈
(Base‘𝑃)) |
43 | | eqid 2738 |
. . . . . 6
⊢
(.r‘(Scalar‘𝑃)) =
(.r‘(Scalar‘𝑃)) |
44 | 12, 26, 27, 28, 43 | lmodvsass 20063 |
. . . . 5
⊢ ((𝑃 ∈ LMod ∧ (𝐹 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝐺 ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )) ∈
(Base‘𝑃))) →
((𝐹(.r‘(Scalar‘𝑃))𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))))) |
45 | 21, 11, 23, 42, 44 | syl13anc 1370 |
. . . 4
⊢ (𝜑 → ((𝐹(.r‘(Scalar‘𝑃))𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))))) |
46 | | mplmon2mul.u |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
47 | 8 | fveq2d 6760 |
. . . . . . 7
⊢ (𝜑 → (.r‘𝑅) =
(.r‘(Scalar‘𝑃))) |
48 | 46, 47 | eqtr2id 2792 |
. . . . . 6
⊢ (𝜑 →
(.r‘(Scalar‘𝑃)) = · ) |
49 | 48 | oveqd 7272 |
. . . . 5
⊢ (𝜑 → (𝐹(.r‘(Scalar‘𝑃))𝐺) = (𝐹 · 𝐺)) |
50 | 49 | oveq1d 7270 |
. . . 4
⊢ (𝜑 → ((𝐹(.r‘(Scalar‘𝑃))𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
51 | 39, 45, 50 | 3eqtr2d 2784 |
. . 3
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)(𝐺( ·𝑠
‘𝑃)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))))) = ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
52 | 33, 36, 51 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → ((𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 )))) |
53 | 3, 27, 15, 14, 13, 7, 1, 17, 18, 6 | mplmon2 21179 |
. . 3
⊢ (𝜑 → (𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 ))) |
54 | 3, 27, 15, 14, 13, 7, 1, 17, 24, 22 | mplmon2 21179 |
. . 3
⊢ (𝜑 → (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) |
55 | 53, 54 | oveq12d 7273 |
. 2
⊢ (𝜑 → ((𝐹( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, (1r‘𝑅), 0 ))) ∙ (𝐺( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, (1r‘𝑅), 0 )))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 )))) |
56 | 7, 46 | ringcl 19715 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶 ∧ 𝐺 ∈ 𝐶) → (𝐹 · 𝐺) ∈ 𝐶) |
57 | 17, 6, 22, 56 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐶) |
58 | 3, 27, 15, 14, 13, 7, 1, 17, 41, 57 | mplmon2 21179 |
. 2
⊢ (𝜑 → ((𝐹 · 𝐺)( ·𝑠
‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (𝐹 · 𝐺), 0 ))) |
59 | 52, 55, 58 | 3eqtr3d 2786 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (𝐹 · 𝐺), 0 ))) |