| Step | Hyp | Ref
| Expression |
| 1 | | isassa.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
| 2 | | isassa.f |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
| 3 | | isassa.b |
. . . 4
⊢ 𝐵 = (Base‘𝐹) |
| 4 | | isassa.s |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
| 5 | | isassa.t |
. . . 4
⊢ × =
(.r‘𝑊) |
| 6 | 1, 2, 3, 4, 5 | isassa 21771 |
. . 3
⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
| 7 | 6 | simprbi 496 |
. 2
⊢ (𝑊 ∈ AssAlg →
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) |
| 8 | | oveq1 7396 |
. . . . . 6
⊢ (𝑟 = 𝐴 → (𝑟 · 𝑥) = (𝐴 · 𝑥)) |
| 9 | 8 | oveq1d 7404 |
. . . . 5
⊢ (𝑟 = 𝐴 → ((𝑟 · 𝑥) × 𝑦) = ((𝐴 · 𝑥) × 𝑦)) |
| 10 | | oveq1 7396 |
. . . . 5
⊢ (𝑟 = 𝐴 → (𝑟 · (𝑥 × 𝑦)) = (𝐴 · (𝑥 × 𝑦))) |
| 11 | 9, 10 | eqeq12d 2746 |
. . . 4
⊢ (𝑟 = 𝐴 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)))) |
| 12 | | oveq1 7396 |
. . . . . 6
⊢ (𝑟 = 𝐴 → (𝑟 · 𝑦) = (𝐴 · 𝑦)) |
| 13 | 12 | oveq2d 7405 |
. . . . 5
⊢ (𝑟 = 𝐴 → (𝑥 × (𝑟 · 𝑦)) = (𝑥 × (𝐴 · 𝑦))) |
| 14 | 13, 10 | eqeq12d 2746 |
. . . 4
⊢ (𝑟 = 𝐴 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)))) |
| 15 | 11, 14 | anbi12d 632 |
. . 3
⊢ (𝑟 = 𝐴 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))))) |
| 16 | | oveq2 7397 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝐴 · 𝑥) = (𝐴 · 𝑋)) |
| 17 | 16 | oveq1d 7404 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝐴 · 𝑥) × 𝑦) = ((𝐴 · 𝑋) × 𝑦)) |
| 18 | | oveq1 7396 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 × 𝑦) = (𝑋 × 𝑦)) |
| 19 | 18 | oveq2d 7405 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐴 · (𝑥 × 𝑦)) = (𝐴 · (𝑋 × 𝑦))) |
| 20 | 17, 19 | eqeq12d 2746 |
. . . 4
⊢ (𝑥 = 𝑋 → (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)))) |
| 21 | | oveq1 7396 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑦))) |
| 22 | 21, 19 | eqeq12d 2746 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)))) |
| 23 | 20, 22 | anbi12d 632 |
. . 3
⊢ (𝑥 = 𝑋 → ((((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))))) |
| 24 | | oveq2 7397 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝐴 · 𝑋) × 𝑦) = ((𝐴 · 𝑋) × 𝑌)) |
| 25 | | oveq2 7397 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 × 𝑦) = (𝑋 × 𝑌)) |
| 26 | 25 | oveq2d 7405 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝐴 · (𝑋 × 𝑦)) = (𝐴 · (𝑋 × 𝑌))) |
| 27 | 24, 26 | eqeq12d 2746 |
. . . 4
⊢ (𝑦 = 𝑌 → (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))) |
| 28 | | oveq2 7397 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝐴 · 𝑦) = (𝐴 · 𝑌)) |
| 29 | 28 | oveq2d 7405 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑌))) |
| 30 | 29, 26 | eqeq12d 2746 |
. . . 4
⊢ (𝑦 = 𝑌 → ((𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |
| 31 | 27, 30 | anbi12d 632 |
. . 3
⊢ (𝑦 = 𝑌 → ((((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))) |
| 32 | 15, 23, 31 | rspc3v 3607 |
. 2
⊢ ((𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))) |
| 33 | 7, 32 | mpan9 506 |
1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |