Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalem Structured version   Visualization version   GIF version

Theorem assalem 20551
 Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
assalem ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))

Proof of Theorem assalem
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isassa.v . . . 4 𝑉 = (Base‘𝑊)
2 isassa.f . . . 4 𝐹 = (Scalar‘𝑊)
3 isassa.b . . . 4 𝐵 = (Base‘𝐹)
4 isassa.s . . . 4 · = ( ·𝑠𝑊)
5 isassa.t . . . 4 × = (.r𝑊)
61, 2, 3, 4, 5isassa 20550 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
76simprbi 500 . 2 (𝑊 ∈ AssAlg → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
8 oveq1 7143 . . . . . 6 (𝑟 = 𝐴 → (𝑟 · 𝑥) = (𝐴 · 𝑥))
98oveq1d 7151 . . . . 5 (𝑟 = 𝐴 → ((𝑟 · 𝑥) × 𝑦) = ((𝐴 · 𝑥) × 𝑦))
10 oveq1 7143 . . . . 5 (𝑟 = 𝐴 → (𝑟 · (𝑥 × 𝑦)) = (𝐴 · (𝑥 × 𝑦)))
119, 10eqeq12d 2814 . . . 4 (𝑟 = 𝐴 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦))))
12 oveq1 7143 . . . . . 6 (𝑟 = 𝐴 → (𝑟 · 𝑦) = (𝐴 · 𝑦))
1312oveq2d 7152 . . . . 5 (𝑟 = 𝐴 → (𝑥 × (𝑟 · 𝑦)) = (𝑥 × (𝐴 · 𝑦)))
1413, 10eqeq12d 2814 . . . 4 (𝑟 = 𝐴 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))))
1511, 14anbi12d 633 . . 3 (𝑟 = 𝐴 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)))))
16 oveq2 7144 . . . . . 6 (𝑥 = 𝑋 → (𝐴 · 𝑥) = (𝐴 · 𝑋))
1716oveq1d 7151 . . . . 5 (𝑥 = 𝑋 → ((𝐴 · 𝑥) × 𝑦) = ((𝐴 · 𝑋) × 𝑦))
18 oveq1 7143 . . . . . 6 (𝑥 = 𝑋 → (𝑥 × 𝑦) = (𝑋 × 𝑦))
1918oveq2d 7152 . . . . 5 (𝑥 = 𝑋 → (𝐴 · (𝑥 × 𝑦)) = (𝐴 · (𝑋 × 𝑦)))
2017, 19eqeq12d 2814 . . . 4 (𝑥 = 𝑋 → (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦))))
21 oveq1 7143 . . . . 5 (𝑥 = 𝑋 → (𝑥 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑦)))
2221, 19eqeq12d 2814 . . . 4 (𝑥 = 𝑋 → ((𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))))
2320, 22anbi12d 633 . . 3 (𝑥 = 𝑋 → ((((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)))))
24 oveq2 7144 . . . . 5 (𝑦 = 𝑌 → ((𝐴 · 𝑋) × 𝑦) = ((𝐴 · 𝑋) × 𝑌))
25 oveq2 7144 . . . . . 6 (𝑦 = 𝑌 → (𝑋 × 𝑦) = (𝑋 × 𝑌))
2625oveq2d 7152 . . . . 5 (𝑦 = 𝑌 → (𝐴 · (𝑋 × 𝑦)) = (𝐴 · (𝑋 × 𝑌)))
2724, 26eqeq12d 2814 . . . 4 (𝑦 = 𝑌 → (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))))
28 oveq2 7144 . . . . . 6 (𝑦 = 𝑌 → (𝐴 · 𝑦) = (𝐴 · 𝑌))
2928oveq2d 7152 . . . . 5 (𝑦 = 𝑌 → (𝑋 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑌)))
3029, 26eqeq12d 2814 . . . 4 (𝑦 = 𝑌 → ((𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
3127, 30anbi12d 633 . . 3 (𝑦 = 𝑌 → ((((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))))
3215, 23, 31rspc3v 3584 . 2 ((𝐴𝐵𝑋𝑉𝑌𝑉) → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))))
337, 32mpan9 510 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  .rcmulr 16561  Scalarcsca 16563   ·𝑠 cvsca 16564  Ringcrg 19294  CRingccrg 19295  LModclmod 19631  AssAlgcasa 20544 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5175 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-iota 6284  df-fv 6333  df-ov 7139  df-assa 20547 This theorem is referenced by:  assaass  20552  assaassr  20553
 Copyright terms: Public domain W3C validator