MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalem Structured version   Visualization version   GIF version

Theorem assalem 20819
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
assalem ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))

Proof of Theorem assalem
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isassa.v . . . 4 𝑉 = (Base‘𝑊)
2 isassa.f . . . 4 𝐹 = (Scalar‘𝑊)
3 isassa.b . . . 4 𝐵 = (Base‘𝐹)
4 isassa.s . . . 4 · = ( ·𝑠𝑊)
5 isassa.t . . . 4 × = (.r𝑊)
61, 2, 3, 4, 5isassa 20818 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
76simprbi 500 . 2 (𝑊 ∈ AssAlg → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
8 oveq1 7220 . . . . . 6 (𝑟 = 𝐴 → (𝑟 · 𝑥) = (𝐴 · 𝑥))
98oveq1d 7228 . . . . 5 (𝑟 = 𝐴 → ((𝑟 · 𝑥) × 𝑦) = ((𝐴 · 𝑥) × 𝑦))
10 oveq1 7220 . . . . 5 (𝑟 = 𝐴 → (𝑟 · (𝑥 × 𝑦)) = (𝐴 · (𝑥 × 𝑦)))
119, 10eqeq12d 2753 . . . 4 (𝑟 = 𝐴 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦))))
12 oveq1 7220 . . . . . 6 (𝑟 = 𝐴 → (𝑟 · 𝑦) = (𝐴 · 𝑦))
1312oveq2d 7229 . . . . 5 (𝑟 = 𝐴 → (𝑥 × (𝑟 · 𝑦)) = (𝑥 × (𝐴 · 𝑦)))
1413, 10eqeq12d 2753 . . . 4 (𝑟 = 𝐴 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))))
1511, 14anbi12d 634 . . 3 (𝑟 = 𝐴 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)))))
16 oveq2 7221 . . . . . 6 (𝑥 = 𝑋 → (𝐴 · 𝑥) = (𝐴 · 𝑋))
1716oveq1d 7228 . . . . 5 (𝑥 = 𝑋 → ((𝐴 · 𝑥) × 𝑦) = ((𝐴 · 𝑋) × 𝑦))
18 oveq1 7220 . . . . . 6 (𝑥 = 𝑋 → (𝑥 × 𝑦) = (𝑋 × 𝑦))
1918oveq2d 7229 . . . . 5 (𝑥 = 𝑋 → (𝐴 · (𝑥 × 𝑦)) = (𝐴 · (𝑋 × 𝑦)))
2017, 19eqeq12d 2753 . . . 4 (𝑥 = 𝑋 → (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦))))
21 oveq1 7220 . . . . 5 (𝑥 = 𝑋 → (𝑥 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑦)))
2221, 19eqeq12d 2753 . . . 4 (𝑥 = 𝑋 → ((𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))))
2320, 22anbi12d 634 . . 3 (𝑥 = 𝑋 → ((((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)))))
24 oveq2 7221 . . . . 5 (𝑦 = 𝑌 → ((𝐴 · 𝑋) × 𝑦) = ((𝐴 · 𝑋) × 𝑌))
25 oveq2 7221 . . . . . 6 (𝑦 = 𝑌 → (𝑋 × 𝑦) = (𝑋 × 𝑌))
2625oveq2d 7229 . . . . 5 (𝑦 = 𝑌 → (𝐴 · (𝑋 × 𝑦)) = (𝐴 · (𝑋 × 𝑌)))
2724, 26eqeq12d 2753 . . . 4 (𝑦 = 𝑌 → (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))))
28 oveq2 7221 . . . . . 6 (𝑦 = 𝑌 → (𝐴 · 𝑦) = (𝐴 · 𝑌))
2928oveq2d 7229 . . . . 5 (𝑦 = 𝑌 → (𝑋 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑌)))
3029, 26eqeq12d 2753 . . . 4 (𝑦 = 𝑌 → ((𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
3127, 30anbi12d 634 . . 3 (𝑦 = 𝑌 → ((((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))))
3215, 23, 31rspc3v 3550 . 2 ((𝐴𝐵𝑋𝑉𝑌𝑉) → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))))
337, 32mpan9 510 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  cfv 6380  (class class class)co 7213  Basecbs 16760  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  Ringcrg 19562  CRingccrg 19563  LModclmod 19899  AssAlgcasa 20812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-ov 7216  df-assa 20815
This theorem is referenced by:  assaass  20820  assaassr  20821
  Copyright terms: Public domain W3C validator