MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa3 Structured version   Visualization version   GIF version

Theorem issubassa3 20827
Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 19996. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
issubassa.s 𝑆 = (𝑊s 𝐴)
issubassa.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
issubassa3 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)

Proof of Theorem issubassa3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa.s . . . 4 𝑆 = (𝑊s 𝐴)
21subrgbas 19809 . . 3 (𝐴 ∈ (SubRing‘𝑊) → 𝐴 = (Base‘𝑆))
32ad2antrl 728 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝐴 = (Base‘𝑆))
4 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
51, 4resssca 16876 . . 3 (𝐴 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑆))
65ad2antrl 728 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Scalar‘𝑊) = (Scalar‘𝑆))
7 eqidd 2738 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
8 eqid 2737 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
91, 8ressvsca 16877 . . 3 (𝐴 ∈ (SubRing‘𝑊) → ( ·𝑠𝑊) = ( ·𝑠𝑆))
109ad2antrl 728 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → ( ·𝑠𝑊) = ( ·𝑠𝑆))
11 eqid 2737 . . . 4 (.r𝑊) = (.r𝑊)
121, 11ressmulr 16848 . . 3 (𝐴 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r𝑆))
1312ad2antrl 728 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (.r𝑊) = (.r𝑆))
14 assalmod 20822 . . 3 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
15 simpr 488 . . 3 ((𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿) → 𝐴𝐿)
16 issubassa.l . . . 4 𝐿 = (LSubSp‘𝑊)
171, 16lsslmod 19997 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝐿) → 𝑆 ∈ LMod)
1814, 15, 17syl2an 599 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ LMod)
191subrgring 19803 . . 3 (𝐴 ∈ (SubRing‘𝑊) → 𝑆 ∈ Ring)
2019ad2antrl 728 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ Ring)
214assasca 20824 . . 3 (𝑊 ∈ AssAlg → (Scalar‘𝑊) ∈ CRing)
2221adantr 484 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Scalar‘𝑊) ∈ CRing)
23 idd 24 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
24 eqid 2737 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2524subrgss 19801 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑊) → 𝐴 ⊆ (Base‘𝑊))
2625ad2antrl 728 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝐴 ⊆ (Base‘𝑊))
2726sseld 3900 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (𝑦𝐴𝑦 ∈ (Base‘𝑊)))
2826sseld 3900 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (𝑧𝐴𝑧 ∈ (Base‘𝑊)))
2923, 27, 283anim123d 1445 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → ((𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))))
3029imp 410 . . 3 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)))
31 eqid 2737 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3224, 4, 31, 8, 11assaass 20820 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3332adantlr 715 . . 3 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3430, 33syldan 594 . 2 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3524, 4, 31, 8, 11assaassr 20821 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3635adantlr 715 . . 3 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3730, 36syldan 594 . 2 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
383, 6, 7, 10, 13, 18, 20, 22, 34, 37isassad 20826 1 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wss 3866  cfv 6380  (class class class)co 7213  Basecbs 16760  s cress 16784  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  Ringcrg 19562  CRingccrg 19563  SubRingcsubrg 19796  LModclmod 19899  LSubSpclss 19968  AssAlgcasa 20812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-mgp 19505  df-ur 19517  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-assa 20815
This theorem is referenced by:  issubassa  20828  rnasclassa  20855
  Copyright terms: Public domain W3C validator