Step | Hyp | Ref
| Expression |
1 | | issubassa.s |
. . . 4
⊢ 𝑆 = (𝑊 ↾s 𝐴) |
2 | 1 | subrgbas 20078 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → 𝐴 = (Base‘𝑆)) |
3 | 2 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝐴 = (Base‘𝑆)) |
4 | | eqid 2736 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
5 | 1, 4 | resssca 17098 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑆)) |
6 | 5 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (Scalar‘𝑊) = (Scalar‘𝑆)) |
7 | | eqidd 2737 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (Base‘(Scalar‘𝑊)) =
(Base‘(Scalar‘𝑊))) |
8 | | eqid 2736 |
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
9 | 1, 8 | ressvsca 17099 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑆)) |
10 | 9 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑆)) |
11 | | eqid 2736 |
. . . 4
⊢
(.r‘𝑊) = (.r‘𝑊) |
12 | 1, 11 | ressmulr 17062 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) →
(.r‘𝑊) =
(.r‘𝑆)) |
13 | 12 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (.r‘𝑊) = (.r‘𝑆)) |
14 | | assalmod 21112 |
. . 3
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
15 | | simpr 486 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ 𝐿) |
16 | | issubassa.l |
. . . 4
⊢ 𝐿 = (LSubSp‘𝑊) |
17 | 1, 16 | lsslmod 20267 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐿) → 𝑆 ∈ LMod) |
18 | 14, 15, 17 | syl2an 597 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ LMod) |
19 | 1 | subrgring 20072 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → 𝑆 ∈ Ring) |
20 | 19 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ Ring) |
21 | 4 | assasca 21114 |
. . 3
⊢ (𝑊 ∈ AssAlg →
(Scalar‘𝑊) ∈
CRing) |
22 | 21 | adantr 482 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (Scalar‘𝑊) ∈ CRing) |
23 | | idd 24 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))) |
24 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑊) =
(Base‘𝑊) |
25 | 24 | subrgss 20070 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑊) → 𝐴 ⊆ (Base‘𝑊)) |
26 | 25 | ad2antrl 726 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝐴 ⊆ (Base‘𝑊)) |
27 | 26 | sseld 3925 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (Base‘𝑊))) |
28 | 26 | sseld 3925 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (𝑧 ∈ 𝐴 → 𝑧 ∈ (Base‘𝑊))) |
29 | 23, 27, 28 | 3anim123d 1443 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → ((𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)))) |
30 | 29 | imp 408 |
. . 3
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) |
31 | | eqid 2736 |
. . . . 5
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
32 | 24, 4, 31, 8, 11 | assaass 21110 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
33 | 32 | adantlr 713 |
. . 3
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
34 | 30, 33 | syldan 592 |
. 2
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥( ·𝑠
‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
35 | 24, 4, 31, 8, 11 | assaassr 21111 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑧)) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
36 | 35 | adantlr 713 |
. . 3
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑧)) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
37 | 30, 36 | syldan 592 |
. 2
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦(.r‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑧)) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
38 | 3, 6, 7, 10, 13, 18, 20, 22, 34, 37 | isassad 21116 |
1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |