Step | Hyp | Ref
| Expression |
1 | | issubassa.s |
. . . 4
β’ π = (π βΎs π΄) |
2 | 1 | subrgbas 20328 |
. . 3
β’ (π΄ β (SubRingβπ) β π΄ = (Baseβπ)) |
3 | 2 | ad2antrl 727 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π΄ = (Baseβπ)) |
4 | | eqid 2733 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
5 | 1, 4 | resssca 17288 |
. . 3
β’ (π΄ β (SubRingβπ) β (Scalarβπ) = (Scalarβπ)) |
6 | 5 | ad2antrl 727 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (Scalarβπ) = (Scalarβπ)) |
7 | | eqidd 2734 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (Baseβ(Scalarβπ)) =
(Baseβ(Scalarβπ))) |
8 | | eqid 2733 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
9 | 1, 8 | ressvsca 17289 |
. . 3
β’ (π΄ β (SubRingβπ) β (
Β·π βπ) = ( Β·π
βπ)) |
10 | 9 | ad2antrl 727 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (
Β·π βπ) = ( Β·π
βπ)) |
11 | | eqid 2733 |
. . . 4
β’
(.rβπ) = (.rβπ) |
12 | 1, 11 | ressmulr 17252 |
. . 3
β’ (π΄ β (SubRingβπ) β
(.rβπ) =
(.rβπ)) |
13 | 12 | ad2antrl 727 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (.rβπ) = (.rβπ)) |
14 | | assalmod 21415 |
. . 3
β’ (π β AssAlg β π β LMod) |
15 | | simpr 486 |
. . 3
β’ ((π΄ β (SubRingβπ) β§ π΄ β πΏ) β π΄ β πΏ) |
16 | | issubassa.l |
. . . 4
β’ πΏ = (LSubSpβπ) |
17 | 1, 16 | lsslmod 20571 |
. . 3
β’ ((π β LMod β§ π΄ β πΏ) β π β LMod) |
18 | 14, 15, 17 | syl2an 597 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π β LMod) |
19 | 1 | subrgring 20322 |
. . 3
β’ (π΄ β (SubRingβπ) β π β Ring) |
20 | 19 | ad2antrl 727 |
. 2
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π β Ring) |
21 | | idd 24 |
. . . . 5
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (π₯ β (Baseβ(Scalarβπ)) β π₯ β (Baseβ(Scalarβπ)))) |
22 | | eqid 2733 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
23 | 22 | subrgss 20320 |
. . . . . . 7
β’ (π΄ β (SubRingβπ) β π΄ β (Baseβπ)) |
24 | 23 | ad2antrl 727 |
. . . . . 6
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π΄ β (Baseβπ)) |
25 | 24 | sseld 3982 |
. . . . 5
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (π¦ β π΄ β π¦ β (Baseβπ))) |
26 | 24 | sseld 3982 |
. . . . 5
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β (π§ β π΄ β π§ β (Baseβπ))) |
27 | 21, 25, 26 | 3anim123d 1444 |
. . . 4
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β ((π₯ β (Baseβ(Scalarβπ)) β§ π¦ β π΄ β§ π§ β π΄) β (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ)))) |
28 | 27 | imp 408 |
. . 3
β’ (((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β π΄ β§ π§ β π΄)) β (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) |
29 | | eqid 2733 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
30 | 22, 4, 29, 8, 11 | assaass 21413 |
. . . 4
β’ ((π β AssAlg β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π¦)(.rβπ)π§) = (π₯( Β·π
βπ)(π¦(.rβπ)π§))) |
31 | 30 | adantlr 714 |
. . 3
β’ (((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯( Β·π
βπ)π¦)(.rβπ)π§) = (π₯( Β·π
βπ)(π¦(.rβπ)π§))) |
32 | 28, 31 | syldan 592 |
. 2
β’ (((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β π΄ β§ π§ β π΄)) β ((π₯( Β·π
βπ)π¦)(.rβπ)π§) = (π₯( Β·π
βπ)(π¦(.rβπ)π§))) |
33 | 22, 4, 29, 8, 11 | assaassr 21414 |
. . . 4
β’ ((π β AssAlg β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(.rβπ)(π₯( Β·π
βπ)π§)) = (π₯( Β·π
βπ)(π¦(.rβπ)π§))) |
34 | 33 | adantlr 714 |
. . 3
β’ (((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(.rβπ)(π₯( Β·π
βπ)π§)) = (π₯( Β·π
βπ)(π¦(.rβπ)π§))) |
35 | 28, 34 | syldan 592 |
. 2
β’ (((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π¦ β π΄ β§ π§ β π΄)) β (π¦(.rβπ)(π₯( Β·π
βπ)π§)) = (π₯( Β·π
βπ)(π¦(.rβπ)π§))) |
36 | 3, 6, 7, 10, 13, 18, 20, 32, 35 | isassad 21419 |
1
β’ ((π β AssAlg β§ (π΄ β (SubRingβπ) β§ π΄ β πΏ)) β π β AssAlg) |