Step | Hyp | Ref
| Expression |
1 | | issubassa.s |
. . . 4
⊢ 𝑆 = (𝑊 ↾s 𝐴) |
2 | 1 | subrgbas 20561 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → 𝐴 = (Base‘𝑆)) |
3 | 2 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝐴 = (Base‘𝑆)) |
4 | | eqid 2726 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
5 | 1, 4 | resssca 17352 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑆)) |
6 | 5 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (Scalar‘𝑊) = (Scalar‘𝑆)) |
7 | | eqidd 2727 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (Base‘(Scalar‘𝑊)) =
(Base‘(Scalar‘𝑊))) |
8 | | eqid 2726 |
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
9 | 1, 8 | ressvsca 17353 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑆)) |
10 | 9 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑆)) |
11 | | eqid 2726 |
. . . 4
⊢
(.r‘𝑊) = (.r‘𝑊) |
12 | 1, 11 | ressmulr 17316 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) →
(.r‘𝑊) =
(.r‘𝑆)) |
13 | 12 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (.r‘𝑊) = (.r‘𝑆)) |
14 | | assalmod 21854 |
. . 3
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
15 | | simpr 483 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿) → 𝐴 ∈ 𝐿) |
16 | | issubassa.l |
. . . 4
⊢ 𝐿 = (LSubSp‘𝑊) |
17 | 1, 16 | lsslmod 20933 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐿) → 𝑆 ∈ LMod) |
18 | 14, 15, 17 | syl2an 594 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ LMod) |
19 | 1 | subrgring 20554 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑊) → 𝑆 ∈ Ring) |
20 | 19 | ad2antrl 726 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ Ring) |
21 | | idd 24 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))) |
22 | | eqid 2726 |
. . . . . . . 8
⊢
(Base‘𝑊) =
(Base‘𝑊) |
23 | 22 | subrgss 20552 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑊) → 𝐴 ⊆ (Base‘𝑊)) |
24 | 23 | ad2antrl 726 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝐴 ⊆ (Base‘𝑊)) |
25 | 24 | sseld 3977 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (𝑦 ∈ 𝐴 → 𝑦 ∈ (Base‘𝑊))) |
26 | 24 | sseld 3977 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → (𝑧 ∈ 𝐴 → 𝑧 ∈ (Base‘𝑊))) |
27 | 21, 25, 26 | 3anim123d 1440 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → ((𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)))) |
28 | 27 | imp 405 |
. . 3
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) |
29 | | eqid 2726 |
. . . . 5
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
30 | 22, 4, 29, 8, 11 | assaass 21852 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
31 | 30 | adantlr 713 |
. . 3
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
32 | 28, 31 | syldan 589 |
. 2
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥( ·𝑠
‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
33 | 22, 4, 29, 8, 11 | assaassr 21853 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑧)) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
34 | 33 | adantlr 713 |
. . 3
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑧)) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
35 | 28, 34 | syldan 589 |
. 2
⊢ (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦(.r‘𝑊)(𝑥( ·𝑠
‘𝑊)𝑧)) = (𝑥( ·𝑠
‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
36 | 3, 6, 7, 10, 13, 18, 20, 32, 35 | isassad 21858 |
1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) |