![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normcan | Structured version Visualization version GIF version |
Description: Cancellation-type law that "extracts" a vector π΄ from its inner product with a proportional vector π΅. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normcan | β’ ((π΅ β β β§ π΅ β 0β β§ π΄ β (spanβ{π΅})) β (((π΄ Β·ih π΅) / ((normββπ΅)β2)) Β·β π΅) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elspansn 31253 | . . . 4 β’ (π΅ β β β (π΄ β (spanβ{π΅}) β βπ₯ β β π΄ = (π₯ Β·β π΅))) | |
2 | 1 | adantr 480 | . . 3 β’ ((π΅ β β β§ π΅ β 0β) β (π΄ β (spanβ{π΅}) β βπ₯ β β π΄ = (π₯ Β·β π΅))) |
3 | oveq1 7419 | . . . . . . . . . 10 β’ (π΄ = (π₯ Β·β π΅) β (π΄ Β·ih π΅) = ((π₯ Β·β π΅) Β·ih π΅)) | |
4 | simpr 484 | . . . . . . . . . . 11 β’ ((π΅ β β β§ π₯ β β) β π₯ β β) | |
5 | simpl 482 | . . . . . . . . . . 11 β’ ((π΅ β β β§ π₯ β β) β π΅ β β) | |
6 | ax-his3 30771 | . . . . . . . . . . 11 β’ ((π₯ β β β§ π΅ β β β§ π΅ β β) β ((π₯ Β·β π΅) Β·ih π΅) = (π₯ Β· (π΅ Β·ih π΅))) | |
7 | 4, 5, 5, 6 | syl3anc 1370 | . . . . . . . . . 10 β’ ((π΅ β β β§ π₯ β β) β ((π₯ Β·β π΅) Β·ih π΅) = (π₯ Β· (π΅ Β·ih π΅))) |
8 | 3, 7 | sylan9eqr 2793 | . . . . . . . . 9 β’ (((π΅ β β β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β (π΄ Β·ih π΅) = (π₯ Β· (π΅ Β·ih π΅))) |
9 | normsq 30821 | . . . . . . . . . 10 β’ (π΅ β β β ((normββπ΅)β2) = (π΅ Β·ih π΅)) | |
10 | 9 | ad2antrr 723 | . . . . . . . . 9 β’ (((π΅ β β β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β ((normββπ΅)β2) = (π΅ Β·ih π΅)) |
11 | 8, 10 | oveq12d 7430 | . . . . . . . 8 β’ (((π΅ β β β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β ((π΄ Β·ih π΅) / ((normββπ΅)β2)) = ((π₯ Β· (π΅ Β·ih π΅)) / (π΅ Β·ih π΅))) |
12 | 11 | adantllr 716 | . . . . . . 7 β’ ((((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β ((π΄ Β·ih π΅) / ((normββπ΅)β2)) = ((π₯ Β· (π΅ Β·ih π΅)) / (π΅ Β·ih π΅))) |
13 | simpr 484 | . . . . . . . . 9 β’ (((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β π₯ β β) | |
14 | hicl 30767 | . . . . . . . . . . 11 β’ ((π΅ β β β§ π΅ β β) β (π΅ Β·ih π΅) β β) | |
15 | 14 | anidms 566 | . . . . . . . . . 10 β’ (π΅ β β β (π΅ Β·ih π΅) β β) |
16 | 15 | ad2antrr 723 | . . . . . . . . 9 β’ (((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β (π΅ Β·ih π΅) β β) |
17 | his6 30786 | . . . . . . . . . . . 12 β’ (π΅ β β β ((π΅ Β·ih π΅) = 0 β π΅ = 0β)) | |
18 | 17 | necon3bid 2984 | . . . . . . . . . . 11 β’ (π΅ β β β ((π΅ Β·ih π΅) β 0 β π΅ β 0β)) |
19 | 18 | biimpar 477 | . . . . . . . . . 10 β’ ((π΅ β β β§ π΅ β 0β) β (π΅ Β·ih π΅) β 0) |
20 | 19 | adantr 480 | . . . . . . . . 9 β’ (((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β (π΅ Β·ih π΅) β 0) |
21 | 13, 16, 20 | divcan4d 12003 | . . . . . . . 8 β’ (((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β ((π₯ Β· (π΅ Β·ih π΅)) / (π΅ Β·ih π΅)) = π₯) |
22 | 21 | adantr 480 | . . . . . . 7 β’ ((((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β ((π₯ Β· (π΅ Β·ih π΅)) / (π΅ Β·ih π΅)) = π₯) |
23 | 12, 22 | eqtrd 2771 | . . . . . 6 β’ ((((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β ((π΄ Β·ih π΅) / ((normββπ΅)β2)) = π₯) |
24 | 23 | oveq1d 7427 | . . . . 5 β’ ((((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β (((π΄ Β·ih π΅) / ((normββπ΅)β2)) Β·β π΅) = (π₯ Β·β π΅)) |
25 | simpr 484 | . . . . 5 β’ ((((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β π΄ = (π₯ Β·β π΅)) | |
26 | 24, 25 | eqtr4d 2774 | . . . 4 β’ ((((π΅ β β β§ π΅ β 0β) β§ π₯ β β) β§ π΄ = (π₯ Β·β π΅)) β (((π΄ Β·ih π΅) / ((normββπ΅)β2)) Β·β π΅) = π΄) |
27 | 26 | rexlimdva2 3156 | . . 3 β’ ((π΅ β β β§ π΅ β 0β) β (βπ₯ β β π΄ = (π₯ Β·β π΅) β (((π΄ Β·ih π΅) / ((normββπ΅)β2)) Β·β π΅) = π΄)) |
28 | 2, 27 | sylbid 239 | . 2 β’ ((π΅ β β β§ π΅ β 0β) β (π΄ β (spanβ{π΅}) β (((π΄ Β·ih π΅) / ((normββπ΅)β2)) Β·β π΅) = π΄)) |
29 | 28 | 3impia 1116 | 1 β’ ((π΅ β β β§ π΅ β 0β β§ π΄ β (spanβ{π΅})) β (((π΄ Β·ih π΅) / ((normββπ΅)β2)) Β·β π΅) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 {csn 4628 βcfv 6543 (class class class)co 7412 βcc 11114 0cc0 11116 Β· cmul 11121 / cdiv 11878 2c2 12274 βcexp 14034 βchba 30606 Β·β csm 30608 Β·ih csp 30609 normβcno 30610 0βc0v 30611 spancspn 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 ax-hilex 30686 ax-hfvadd 30687 ax-hvcom 30688 ax-hvass 30689 ax-hv0cl 30690 ax-hvaddid 30691 ax-hfvmul 30692 ax-hvmulid 30693 ax-hvmulass 30694 ax-hvdistr1 30695 ax-hvdistr2 30696 ax-hvmul0 30697 ax-hfi 30766 ax-his1 30769 ax-his2 30770 ax-his3 30771 ax-his4 30772 ax-hcompl 30889 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-acn 9943 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-fbas 21230 df-fg 21231 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-cld 22843 df-ntr 22844 df-cls 22845 df-nei 22922 df-cn 23051 df-cnp 23052 df-lm 23053 df-haus 23139 df-tx 23386 df-hmeo 23579 df-fil 23670 df-fm 23762 df-flim 23763 df-flf 23764 df-xms 24146 df-ms 24147 df-tms 24148 df-cfil 25103 df-cau 25104 df-cmet 25105 df-grpo 30180 df-gid 30181 df-ginv 30182 df-gdiv 30183 df-ablo 30232 df-vc 30246 df-nv 30279 df-va 30282 df-ba 30283 df-sm 30284 df-0v 30285 df-vs 30286 df-nmcv 30287 df-ims 30288 df-dip 30388 df-ssp 30409 df-ph 30500 df-cbn 30550 df-hnorm 30655 df-hba 30656 df-hvsub 30658 df-hlim 30659 df-hcau 30660 df-sh 30894 df-ch 30908 df-oc 30939 df-ch0 30940 df-span 30996 |
This theorem is referenced by: pjspansn 31264 eigvec1 31649 |
Copyright terms: Public domain | W3C validator |