| Step | Hyp | Ref
| Expression |
| 1 | | hmopre 31942 |
. . . . 5
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈
ℝ) |
| 2 | 1 | adantlr 715 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈
ℝ) |
| 3 | 1 | recnd 11289 |
. . . . . 6
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈
ℂ) |
| 4 | 3 | abscld 15475 |
. . . . 5
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
(abs‘((𝑇‘𝑥)
·ih 𝑥)) ∈ ℝ) |
| 5 | 4 | adantlr 715 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ∈
ℝ) |
| 6 | | idhmop 32001 |
. . . . . . 7
⊢
Iop ∈ HrmOp |
| 7 | | hmopm 32040 |
. . . . . . 7
⊢
(((normop‘𝑇) ∈ ℝ ∧ Iop ∈
HrmOp) → ((normop‘𝑇) ·op
Iop ) ∈ HrmOp) |
| 8 | 6, 7 | mpan2 691 |
. . . . . 6
⊢
((normop‘𝑇) ∈ ℝ →
((normop‘𝑇) ·op
Iop ) ∈ HrmOp) |
| 9 | | hmopre 31942 |
. . . . . 6
⊢
((((normop‘𝑇) ·op
Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) ∈ ℝ) |
| 10 | 8, 9 | sylan 580 |
. . . . 5
⊢
(((normop‘𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) →
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) ∈ ℝ) |
| 11 | 10 | adantll 714 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) ∈ ℝ) |
| 12 | 1 | leabsd 15453 |
. . . . 5
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ≤ (abs‘((𝑇‘𝑥) ·ih 𝑥))) |
| 13 | 12 | adantlr 715 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ≤ (abs‘((𝑇‘𝑥) ·ih 𝑥))) |
| 14 | | hmopf 31893 |
. . . . . . . 8
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) |
| 15 | | ffvelcdm 7101 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(𝑇‘𝑥) ∈ ℋ) |
| 16 | | normcl 31144 |
. . . . . . . . 9
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 18 | 14, 17 | sylan 580 |
. . . . . . 7
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 19 | 18 | adantlr 715 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 20 | | normcl 31144 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℝ) |
| 21 | 20 | adantl 481 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘𝑥) ∈ ℝ) |
| 22 | 19, 21 | remulcld 11291 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ∈ ℝ) |
| 23 | 14, 15 | sylan 580 |
. . . . . . 7
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
| 24 | | bcs 31200 |
. . . . . . 7
⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ≤
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥))) |
| 25 | 23, 24 | sylancom 588 |
. . . . . 6
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
(abs‘((𝑇‘𝑥)
·ih 𝑥)) ≤
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥))) |
| 26 | 25 | adantlr 715 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ≤
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥))) |
| 27 | | remulcl 11240 |
. . . . . . . . 9
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘𝑥) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
| 28 | 20, 27 | sylan2 593 |
. . . . . . . 8
⊢
(((normop‘𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
| 29 | 28 | adantll 714 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
| 30 | | normge0 31145 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ → 0 ≤
(normℎ‘𝑥)) |
| 31 | 20, 30 | jca 511 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑥))) |
| 32 | 31 | adantl 481 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘𝑥) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑥))) |
| 33 | | hmoplin 31961 |
. . . . . . . . 9
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |
| 34 | | elbdop2 31890 |
. . . . . . . . . 10
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧
(normop‘𝑇)
∈ ℝ)) |
| 35 | 34 | biimpri 228 |
. . . . . . . . 9
⊢ ((𝑇 ∈ LinOp ∧
(normop‘𝑇)
∈ ℝ) → 𝑇
∈ BndLinOp) |
| 36 | 33, 35 | sylan 580 |
. . . . . . . 8
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → 𝑇
∈ BndLinOp) |
| 37 | | nmbdoplb 32044 |
. . . . . . . 8
⊢ ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) |
| 38 | 36, 37 | sylan 580 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) |
| 39 | | lemul1a 12121 |
. . . . . . 7
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ ∧
((normℎ‘𝑥) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑥))) ∧
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) →
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥))) |
| 40 | 19, 29, 32, 38, 39 | syl31anc 1375 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥))) |
| 41 | | recn 11245 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ∈ ℝ →
(normop‘𝑇)
∈ ℂ) |
| 42 | 41 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normop‘𝑇) ∈ ℂ) |
| 43 | 21 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘𝑥) ∈ ℂ) |
| 44 | 42, 43, 43 | mulassd 11284 |
. . . . . . . 8
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥)) = ((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥)))) |
| 45 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → 𝑥
∈ ℋ) |
| 46 | | ax-his3 31103 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) →
(((normop‘𝑇) ·ℎ 𝑥)
·ih 𝑥) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
| 47 | 42, 45, 45, 46 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·ℎ 𝑥)
·ih 𝑥) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
| 48 | 20 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℂ) |
| 49 | 48 | sqvald 14183 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥)↑2) =
((normℎ‘𝑥) ·
(normℎ‘𝑥))) |
| 50 | | normsq 31153 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥)↑2) = (𝑥 ·ih 𝑥)) |
| 51 | 49, 50 | eqtr3d 2779 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ·
(normℎ‘𝑥)) = (𝑥 ·ih 𝑥)) |
| 52 | 51 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥))) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
| 53 | 52 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥))) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
| 54 | 47, 53 | eqtr4d 2780 |
. . . . . . . 8
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·ℎ 𝑥)
·ih 𝑥) = ((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥)))) |
| 55 | 44, 54 | eqtr4d 2780 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥)) = (((normop‘𝑇)
·ℎ 𝑥) ·ih 𝑥)) |
| 56 | | hoif 31773 |
. . . . . . . . . . 11
⊢
Iop : ℋ–1-1-onto→ ℋ |
| 57 | | f1of 6848 |
. . . . . . . . . . 11
⊢ (
Iop : ℋ–1-1-onto→ ℋ → Iop :
ℋ⟶ ℋ) |
| 58 | 56, 57 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → Iop : ℋ⟶
ℋ) |
| 59 | | homval 31760 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ Iop :
ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) →
(((normop‘𝑇) ·op
Iop )‘𝑥) =
((normop‘𝑇) ·ℎ (
Iop ‘𝑥))) |
| 60 | 42, 58, 45, 59 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·op
Iop )‘𝑥) =
((normop‘𝑇) ·ℎ (
Iop ‘𝑥))) |
| 61 | | hoival 31774 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ → (
Iop ‘𝑥) =
𝑥) |
| 62 | 61 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
((normop‘𝑇) ·ℎ (
Iop ‘𝑥)) =
((normop‘𝑇) ·ℎ 𝑥)) |
| 63 | 62 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normop‘𝑇) ·ℎ (
Iop ‘𝑥)) =
((normop‘𝑇) ·ℎ 𝑥)) |
| 64 | 60, 63 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·op
Iop )‘𝑥) =
((normop‘𝑇) ·ℎ 𝑥)) |
| 65 | 64 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) = (((normop‘𝑇)
·ℎ 𝑥) ·ih 𝑥)) |
| 66 | 55, 65 | eqtr4d 2780 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥)) = ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
| 67 | 40, 66 | breqtrd 5169 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ≤ ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
| 68 | 5, 22, 11, 26, 67 | letrd 11418 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
| 69 | 2, 5, 11, 13, 68 | letrd 11418 |
. . 3
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
| 70 | 69 | ralrimiva 3146 |
. 2
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
| 71 | | leop2 32143 |
. . 3
⊢ ((𝑇 ∈ HrmOp ∧
((normop‘𝑇) ·op
Iop ) ∈ HrmOp) → (𝑇 ≤op
((normop‘𝑇) ·op
Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥))) |
| 72 | 8, 71 | sylan2 593 |
. 2
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → (𝑇
≤op ((normop‘𝑇) ·op
Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥))) |
| 73 | 70, 72 | mpbird 257 |
1
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → 𝑇
≤op ((normop‘𝑇) ·op
Iop )) |