HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopnmid Structured version   Visualization version   GIF version

Theorem leopnmid 32108
Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopnmid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))

Proof of Theorem leopnmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmopre 31893 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
21adantlr 715 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
31recnd 11132 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
43abscld 15338 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
54adantlr 715 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
6 idhmop 31952 . . . . . . 7 Iop ∈ HrmOp
7 hmopm 31991 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
86, 7mpan2 691 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
9 hmopre 31893 . . . . . 6 ((((normop𝑇) ·op Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
108, 9sylan 580 . . . . 5 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
1110adantll 714 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
121leabsd 15314 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
1312adantlr 715 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
14 hmopf 31844 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 ffvelcdm 7009 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 normcl 31095 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1814, 17sylan 580 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1918adantlr 715 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
20 normcl 31095 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120adantl 481 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℝ)
2219, 21remulcld 11134 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ∈ ℝ)
2314, 15sylan 580 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
24 bcs 31151 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2523, 24sylancom 588 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2625adantlr 715 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
27 remulcl 11083 . . . . . . . . 9 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2820, 27sylan2 593 . . . . . . . 8 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2928adantll 714 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
30 normge0 31096 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm𝑥))
3120, 30jca 511 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
3231adantl 481 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
33 hmoplin 31912 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
34 elbdop2 31841 . . . . . . . . . 10 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ))
3534biimpri 228 . . . . . . . . 9 ((𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
3633, 35sylan 580 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
37 nmbdoplb 31995 . . . . . . . 8 ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
3836, 37sylan 580 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
39 lemul1a 11967 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑥)) ∈ ℝ ∧ ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥))) ∧ (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥))) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
4019, 29, 32, 38, 39syl31anc 1375 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
41 recn 11088 . . . . . . . . . 10 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
4241ad2antlr 727 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (normop𝑇) ∈ ℂ)
4321recnd 11132 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℂ)
4442, 43, 43mulassd 11127 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
45 simpr 484 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
46 ax-his3 31054 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4742, 45, 45, 46syl3anc 1373 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4820recnd 11132 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
4948sqvald 14042 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = ((norm𝑥) · (norm𝑥)))
50 normsq 31104 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = (𝑥 ·ih 𝑥))
5149, 50eqtr3d 2767 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm𝑥) · (norm𝑥)) = (𝑥 ·ih 𝑥))
5251oveq2d 7357 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5352adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5447, 53eqtr4d 2768 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
5544, 54eqtr4d 2768 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = (((normop𝑇) · 𝑥) ·ih 𝑥))
56 hoif 31724 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
57 f1of 6759 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
5856, 57mp1i 13 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → Iop : ℋ⟶ ℋ)
59 homval 31711 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
6042, 58, 45, 59syl3anc 1373 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
61 hoival 31725 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ( Iop𝑥) = 𝑥)
6261oveq2d 7357 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6362adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6460, 63eqtrd 2765 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · 𝑥))
6564oveq1d 7356 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) = (((normop𝑇) · 𝑥) ·ih 𝑥))
6655, 65eqtr4d 2768 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
6740, 66breqtrd 5115 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
685, 22, 11, 26, 67letrd 11262 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
692, 5, 11, 13, 68letrd 11262 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
7069ralrimiva 3122 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
71 leop2 32094 . . 3 ((𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
728, 71sylan2 593 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
7370, 72mpbird 257 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045   class class class wbr 5089  wf 6473  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998   · cmul 11003  cle 11139  2c2 12172  cexp 13960  abscabs 15133  chba 30889   · csm 30891   ·ih csp 30892  normcno 30893   ·op chot 30909   Iop chio 30914  normopcnop 30915  LinOpclo 30917  BndLinOpcbo 30918  HrmOpcho 30920  op cleo 30928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980  ax-hfi 31049  ax-his1 31052  ax-his2 31053  ax-his3 31054  ax-his4 31055  ax-hcompl 31172
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-sum 15586  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-cn 23135  df-cnp 23136  df-lm 23137  df-t1 23222  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cfil 25175  df-cau 25176  df-cmet 25177  df-grpo 30463  df-gid 30464  df-ginv 30465  df-gdiv 30466  df-ablo 30515  df-vc 30529  df-nv 30562  df-va 30565  df-ba 30566  df-sm 30567  df-0v 30568  df-vs 30569  df-nmcv 30570  df-ims 30571  df-dip 30671  df-ssp 30692  df-ph 30783  df-cbn 30833  df-hnorm 30938  df-hba 30939  df-hvsub 30941  df-hlim 30942  df-hcau 30943  df-sh 31177  df-ch 31191  df-oc 31222  df-ch0 31223  df-shs 31278  df-pjh 31365  df-hosum 31700  df-homul 31701  df-hodif 31702  df-h0op 31718  df-iop 31719  df-nmop 31809  df-lnop 31811  df-bdop 31812  df-hmop 31814  df-leop 31822
This theorem is referenced by:  nmopleid  32109
  Copyright terms: Public domain W3C validator