HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopnmid Structured version   Visualization version   GIF version

Theorem leopnmid 32170
Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopnmid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))

Proof of Theorem leopnmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmopre 31955 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
21adantlr 714 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
31recnd 11318 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
43abscld 15485 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
54adantlr 714 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
6 idhmop 32014 . . . . . . 7 Iop ∈ HrmOp
7 hmopm 32053 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
86, 7mpan2 690 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
9 hmopre 31955 . . . . . 6 ((((normop𝑇) ·op Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
108, 9sylan 579 . . . . 5 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
1110adantll 713 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
121leabsd 15463 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
1312adantlr 714 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
14 hmopf 31906 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 ffvelcdm 7115 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 normcl 31157 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1814, 17sylan 579 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1918adantlr 714 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
20 normcl 31157 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120adantl 481 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℝ)
2219, 21remulcld 11320 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ∈ ℝ)
2314, 15sylan 579 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
24 bcs 31213 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2523, 24sylancom 587 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2625adantlr 714 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
27 remulcl 11269 . . . . . . . . 9 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2820, 27sylan2 592 . . . . . . . 8 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2928adantll 713 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
30 normge0 31158 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm𝑥))
3120, 30jca 511 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
3231adantl 481 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
33 hmoplin 31974 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
34 elbdop2 31903 . . . . . . . . . 10 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ))
3534biimpri 228 . . . . . . . . 9 ((𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
3633, 35sylan 579 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
37 nmbdoplb 32057 . . . . . . . 8 ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
3836, 37sylan 579 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
39 lemul1a 12148 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑥)) ∈ ℝ ∧ ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥))) ∧ (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥))) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
4019, 29, 32, 38, 39syl31anc 1373 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
41 recn 11274 . . . . . . . . . 10 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
4241ad2antlr 726 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (normop𝑇) ∈ ℂ)
4321recnd 11318 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℂ)
4442, 43, 43mulassd 11313 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
45 simpr 484 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
46 ax-his3 31116 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4742, 45, 45, 46syl3anc 1371 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4820recnd 11318 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
4948sqvald 14193 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = ((norm𝑥) · (norm𝑥)))
50 normsq 31166 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = (𝑥 ·ih 𝑥))
5149, 50eqtr3d 2782 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm𝑥) · (norm𝑥)) = (𝑥 ·ih 𝑥))
5251oveq2d 7464 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5352adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5447, 53eqtr4d 2783 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
5544, 54eqtr4d 2783 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = (((normop𝑇) · 𝑥) ·ih 𝑥))
56 hoif 31786 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
57 f1of 6862 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
5856, 57mp1i 13 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → Iop : ℋ⟶ ℋ)
59 homval 31773 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
6042, 58, 45, 59syl3anc 1371 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
61 hoival 31787 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ( Iop𝑥) = 𝑥)
6261oveq2d 7464 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6362adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6460, 63eqtrd 2780 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · 𝑥))
6564oveq1d 7463 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) = (((normop𝑇) · 𝑥) ·ih 𝑥))
6655, 65eqtr4d 2783 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
6740, 66breqtrd 5192 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
685, 22, 11, 26, 67letrd 11447 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
692, 5, 11, 13, 68letrd 11447 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
7069ralrimiva 3152 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
71 leop2 32156 . . 3 ((𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
728, 71sylan2 592 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
7370, 72mpbird 257 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   · cmul 11189  cle 11325  2c2 12348  cexp 14112  abscabs 15283  chba 30951   · csm 30953   ·ih csp 30954  normcno 30955   ·op chot 30971   Iop chio 30976  normopcnop 30977  LinOpclo 30979  BndLinOpcbo 30980  HrmOpcho 30982  op cleo 30990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-t1 23343  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-pjh 31427  df-hosum 31762  df-homul 31763  df-hodif 31764  df-h0op 31780  df-iop 31781  df-nmop 31871  df-lnop 31873  df-bdop 31874  df-hmop 31876  df-leop 31884
This theorem is referenced by:  nmopleid  32171
  Copyright terms: Public domain W3C validator