HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopnmid Structured version   Visualization version   GIF version

Theorem leopnmid 30401
Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopnmid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))

Proof of Theorem leopnmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmopre 30186 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
21adantlr 711 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
31recnd 10934 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
43abscld 15076 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
54adantlr 711 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
6 idhmop 30245 . . . . . . 7 Iop ∈ HrmOp
7 hmopm 30284 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
86, 7mpan2 687 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
9 hmopre 30186 . . . . . 6 ((((normop𝑇) ·op Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
108, 9sylan 579 . . . . 5 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
1110adantll 710 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
121leabsd 15054 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
1312adantlr 711 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
14 hmopf 30137 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 ffvelrn 6941 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 normcl 29388 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1814, 17sylan 579 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1918adantlr 711 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
20 normcl 29388 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120adantl 481 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℝ)
2219, 21remulcld 10936 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ∈ ℝ)
2314, 15sylan 579 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
24 bcs 29444 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2523, 24sylancom 587 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2625adantlr 711 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
27 remulcl 10887 . . . . . . . . 9 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2820, 27sylan2 592 . . . . . . . 8 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2928adantll 710 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
30 normge0 29389 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm𝑥))
3120, 30jca 511 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
3231adantl 481 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
33 hmoplin 30205 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
34 elbdop2 30134 . . . . . . . . . 10 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ))
3534biimpri 227 . . . . . . . . 9 ((𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
3633, 35sylan 579 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
37 nmbdoplb 30288 . . . . . . . 8 ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
3836, 37sylan 579 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
39 lemul1a 11759 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑥)) ∈ ℝ ∧ ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥))) ∧ (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥))) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
4019, 29, 32, 38, 39syl31anc 1371 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
41 recn 10892 . . . . . . . . . 10 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
4241ad2antlr 723 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (normop𝑇) ∈ ℂ)
4321recnd 10934 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℂ)
4442, 43, 43mulassd 10929 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
45 simpr 484 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
46 ax-his3 29347 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4742, 45, 45, 46syl3anc 1369 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4820recnd 10934 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
4948sqvald 13789 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = ((norm𝑥) · (norm𝑥)))
50 normsq 29397 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = (𝑥 ·ih 𝑥))
5149, 50eqtr3d 2780 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm𝑥) · (norm𝑥)) = (𝑥 ·ih 𝑥))
5251oveq2d 7271 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5352adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5447, 53eqtr4d 2781 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
5544, 54eqtr4d 2781 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = (((normop𝑇) · 𝑥) ·ih 𝑥))
56 hoif 30017 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
57 f1of 6700 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
5856, 57mp1i 13 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → Iop : ℋ⟶ ℋ)
59 homval 30004 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
6042, 58, 45, 59syl3anc 1369 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
61 hoival 30018 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ( Iop𝑥) = 𝑥)
6261oveq2d 7271 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6362adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6460, 63eqtrd 2778 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · 𝑥))
6564oveq1d 7270 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) = (((normop𝑇) · 𝑥) ·ih 𝑥))
6655, 65eqtr4d 2781 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
6740, 66breqtrd 5096 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
685, 22, 11, 26, 67letrd 11062 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
692, 5, 11, 13, 68letrd 11062 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
7069ralrimiva 3107 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
71 leop2 30387 . . 3 ((𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
728, 71sylan2 592 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
7370, 72mpbird 256 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807  cle 10941  2c2 11958  cexp 13710  abscabs 14873  chba 29182   · csm 29184   ·ih csp 29185  normcno 29186   ·op chot 29202   Iop chio 29207  normopcnop 29208  LinOpclo 29210  BndLinOpcbo 29211  HrmOpcho 29213  op cleo 29221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-t1 22373  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-pjh 29658  df-hosum 29993  df-homul 29994  df-hodif 29995  df-h0op 30011  df-iop 30012  df-nmop 30102  df-lnop 30104  df-bdop 30105  df-hmop 30107  df-leop 30115
This theorem is referenced by:  nmopleid  30402
  Copyright terms: Public domain W3C validator