Step | Hyp | Ref
| Expression |
1 | | hmopre 30285 |
. . . . 5
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈
ℝ) |
2 | 1 | adantlr 712 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈
ℝ) |
3 | 1 | recnd 11003 |
. . . . . 6
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ∈
ℂ) |
4 | 3 | abscld 15148 |
. . . . 5
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
(abs‘((𝑇‘𝑥)
·ih 𝑥)) ∈ ℝ) |
5 | 4 | adantlr 712 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ∈
ℝ) |
6 | | idhmop 30344 |
. . . . . . 7
⊢
Iop ∈ HrmOp |
7 | | hmopm 30383 |
. . . . . . 7
⊢
(((normop‘𝑇) ∈ ℝ ∧ Iop ∈
HrmOp) → ((normop‘𝑇) ·op
Iop ) ∈ HrmOp) |
8 | 6, 7 | mpan2 688 |
. . . . . 6
⊢
((normop‘𝑇) ∈ ℝ →
((normop‘𝑇) ·op
Iop ) ∈ HrmOp) |
9 | | hmopre 30285 |
. . . . . 6
⊢
((((normop‘𝑇) ·op
Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) ∈ ℝ) |
10 | 8, 9 | sylan 580 |
. . . . 5
⊢
(((normop‘𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) →
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) ∈ ℝ) |
11 | 10 | adantll 711 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) ∈ ℝ) |
12 | 1 | leabsd 15126 |
. . . . 5
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ≤ (abs‘((𝑇‘𝑥) ·ih 𝑥))) |
13 | 12 | adantlr 712 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ≤ (abs‘((𝑇‘𝑥) ·ih 𝑥))) |
14 | | hmopf 30236 |
. . . . . . . 8
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶
ℋ) |
15 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(𝑇‘𝑥) ∈ ℋ) |
16 | | normcl 29487 |
. . . . . . . . 9
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
18 | 14, 17 | sylan 580 |
. . . . . . 7
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
19 | 18 | adantlr 712 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
20 | | normcl 29487 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℝ) |
21 | 20 | adantl 482 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘𝑥) ∈ ℝ) |
22 | 19, 21 | remulcld 11005 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ∈ ℝ) |
23 | 14, 15 | sylan 580 |
. . . . . . 7
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
24 | | bcs 29543 |
. . . . . . 7
⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ≤
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥))) |
25 | 23, 24 | sylancom 588 |
. . . . . 6
⊢ ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) →
(abs‘((𝑇‘𝑥)
·ih 𝑥)) ≤
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥))) |
26 | 25 | adantlr 712 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ≤
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥))) |
27 | | remulcl 10956 |
. . . . . . . . 9
⊢
(((normop‘𝑇) ∈ ℝ ∧
(normℎ‘𝑥) ∈ ℝ) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
28 | 20, 27 | sylan2 593 |
. . . . . . . 8
⊢
(((normop‘𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) →
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
29 | 28 | adantll 711 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ) |
30 | | normge0 29488 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℋ → 0 ≤
(normℎ‘𝑥)) |
31 | 20, 30 | jca 512 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑥))) |
32 | 31 | adantl 482 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘𝑥) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑥))) |
33 | | hmoplin 30304 |
. . . . . . . . 9
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |
34 | | elbdop2 30233 |
. . . . . . . . . 10
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧
(normop‘𝑇)
∈ ℝ)) |
35 | 34 | biimpri 227 |
. . . . . . . . 9
⊢ ((𝑇 ∈ LinOp ∧
(normop‘𝑇)
∈ ℝ) → 𝑇
∈ BndLinOp) |
36 | 33, 35 | sylan 580 |
. . . . . . . 8
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → 𝑇
∈ BndLinOp) |
37 | | nmbdoplb 30387 |
. . . . . . . 8
⊢ ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) |
38 | 36, 37 | sylan 580 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) |
39 | | lemul1a 11829 |
. . . . . . 7
⊢
((((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧
((normop‘𝑇) ·
(normℎ‘𝑥)) ∈ ℝ ∧
((normℎ‘𝑥) ∈ ℝ ∧ 0 ≤
(normℎ‘𝑥))) ∧
(normℎ‘(𝑇‘𝑥)) ≤ ((normop‘𝑇) ·
(normℎ‘𝑥))) →
((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥))) |
40 | 19, 29, 32, 38, 39 | syl31anc 1372 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ≤ (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥))) |
41 | | recn 10961 |
. . . . . . . . . 10
⊢
((normop‘𝑇) ∈ ℝ →
(normop‘𝑇)
∈ ℂ) |
42 | 41 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normop‘𝑇) ∈ ℂ) |
43 | 21 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (normℎ‘𝑥) ∈ ℂ) |
44 | 42, 43, 43 | mulassd 10998 |
. . . . . . . 8
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥)) = ((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥)))) |
45 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → 𝑥
∈ ℋ) |
46 | | ax-his3 29446 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) →
(((normop‘𝑇) ·ℎ 𝑥)
·ih 𝑥) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
47 | 42, 45, 45, 46 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·ℎ 𝑥)
·ih 𝑥) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
48 | 20 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
(normℎ‘𝑥) ∈ ℂ) |
49 | 48 | sqvald 13861 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥)↑2) =
((normℎ‘𝑥) ·
(normℎ‘𝑥))) |
50 | | normsq 29496 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥)↑2) = (𝑥 ·ih 𝑥)) |
51 | 49, 50 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ·
(normℎ‘𝑥)) = (𝑥 ·ih 𝑥)) |
52 | 51 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥))) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
53 | 52 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥))) = ((normop‘𝑇) · (𝑥 ·ih 𝑥))) |
54 | 47, 53 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·ℎ 𝑥)
·ih 𝑥) = ((normop‘𝑇) ·
((normℎ‘𝑥) ·
(normℎ‘𝑥)))) |
55 | 44, 54 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥)) = (((normop‘𝑇)
·ℎ 𝑥) ·ih 𝑥)) |
56 | | hoif 30116 |
. . . . . . . . . . 11
⊢
Iop : ℋ–1-1-onto→ ℋ |
57 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (
Iop : ℋ–1-1-onto→ ℋ → Iop :
ℋ⟶ ℋ) |
58 | 56, 57 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → Iop : ℋ⟶
ℋ) |
59 | | homval 30103 |
. . . . . . . . . 10
⊢
(((normop‘𝑇) ∈ ℂ ∧ Iop :
ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) →
(((normop‘𝑇) ·op
Iop )‘𝑥) =
((normop‘𝑇) ·ℎ (
Iop ‘𝑥))) |
60 | 42, 58, 45, 59 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·op
Iop )‘𝑥) =
((normop‘𝑇) ·ℎ (
Iop ‘𝑥))) |
61 | | hoival 30117 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℋ → (
Iop ‘𝑥) =
𝑥) |
62 | 61 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℋ →
((normop‘𝑇) ·ℎ (
Iop ‘𝑥)) =
((normop‘𝑇) ·ℎ 𝑥)) |
63 | 62 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normop‘𝑇) ·ℎ (
Iop ‘𝑥)) =
((normop‘𝑇) ·ℎ 𝑥)) |
64 | 60, 63 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·op
Iop )‘𝑥) =
((normop‘𝑇) ·ℎ 𝑥)) |
65 | 64 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥) = (((normop‘𝑇)
·ℎ 𝑥) ·ih 𝑥)) |
66 | 55, 65 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (((normop‘𝑇) ·
(normℎ‘𝑥)) ·
(normℎ‘𝑥)) = ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
67 | 40, 66 | breqtrd 5100 |
. . . . 5
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((normℎ‘(𝑇‘𝑥)) ·
(normℎ‘𝑥)) ≤ ((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
68 | 5, 22, 11, 26, 67 | letrd 11132 |
. . . 4
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → (abs‘((𝑇‘𝑥) ·ih 𝑥)) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
69 | 2, 5, 11, 13, 68 | letrd 11132 |
. . 3
⊢ (((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) ∧ 𝑥
∈ ℋ) → ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
70 | 69 | ralrimiva 3103 |
. 2
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥)) |
71 | | leop2 30486 |
. . 3
⊢ ((𝑇 ∈ HrmOp ∧
((normop‘𝑇) ·op
Iop ) ∈ HrmOp) → (𝑇 ≤op
((normop‘𝑇) ·op
Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥))) |
72 | 8, 71 | sylan2 593 |
. 2
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → (𝑇
≤op ((normop‘𝑇) ·op
Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) ≤
((((normop‘𝑇) ·op
Iop )‘𝑥)
·ih 𝑥))) |
73 | 70, 72 | mpbird 256 |
1
⊢ ((𝑇 ∈ HrmOp ∧
(normop‘𝑇)
∈ ℝ) → 𝑇
≤op ((normop‘𝑇) ·op
Iop )) |