HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopnmid Structured version   Visualization version   GIF version

Theorem leopnmid 32100
Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopnmid ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))

Proof of Theorem leopnmid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hmopre 31885 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
21adantlr 715 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℝ)
31recnd 11162 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ∈ ℂ)
43abscld 15364 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
54adantlr 715 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ∈ ℝ)
6 idhmop 31944 . . . . . . 7 Iop ∈ HrmOp
7 hmopm 31983 . . . . . . 7 (((normop𝑇) ∈ ℝ ∧ Iop ∈ HrmOp) → ((normop𝑇) ·op Iop ) ∈ HrmOp)
86, 7mpan2 691 . . . . . 6 ((normop𝑇) ∈ ℝ → ((normop𝑇) ·op Iop ) ∈ HrmOp)
9 hmopre 31885 . . . . . 6 ((((normop𝑇) ·op Iop ) ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
108, 9sylan 580 . . . . 5 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
1110adantll 714 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) ∈ ℝ)
121leabsd 15340 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
1312adantlr 715 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ (abs‘((𝑇𝑥) ·ih 𝑥)))
14 hmopf 31836 . . . . . . . 8 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
15 ffvelcdm 7019 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
16 normcl 31087 . . . . . . . . 9 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1814, 17sylan 580 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
1918adantlr 715 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ∈ ℝ)
20 normcl 31087 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120adantl 481 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℝ)
2219, 21remulcld 11164 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ∈ ℝ)
2314, 15sylan 580 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
24 bcs 31143 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2523, 24sylancom 588 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
2625adantlr 715 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((norm‘(𝑇𝑥)) · (norm𝑥)))
27 remulcl 11113 . . . . . . . . 9 (((normop𝑇) ∈ ℝ ∧ (norm𝑥) ∈ ℝ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2820, 27sylan2 593 . . . . . . . 8 (((normop𝑇) ∈ ℝ ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
2928adantll 714 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · (norm𝑥)) ∈ ℝ)
30 normge0 31088 . . . . . . . . 9 (𝑥 ∈ ℋ → 0 ≤ (norm𝑥))
3120, 30jca 511 . . . . . . . 8 (𝑥 ∈ ℋ → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
3231adantl 481 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥)))
33 hmoplin 31904 . . . . . . . . 9 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
34 elbdop2 31833 . . . . . . . . . 10 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ))
3534biimpri 228 . . . . . . . . 9 ((𝑇 ∈ LinOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
3633, 35sylan 580 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇 ∈ BndLinOp)
37 nmbdoplb 31987 . . . . . . . 8 ((𝑇 ∈ BndLinOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
3836, 37sylan 580 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥)))
39 lemul1a 11996 . . . . . . 7 ((((norm‘(𝑇𝑥)) ∈ ℝ ∧ ((normop𝑇) · (norm𝑥)) ∈ ℝ ∧ ((norm𝑥) ∈ ℝ ∧ 0 ≤ (norm𝑥))) ∧ (norm‘(𝑇𝑥)) ≤ ((normop𝑇) · (norm𝑥))) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
4019, 29, 32, 38, 39syl31anc 1375 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ (((normop𝑇) · (norm𝑥)) · (norm𝑥)))
41 recn 11118 . . . . . . . . . 10 ((normop𝑇) ∈ ℝ → (normop𝑇) ∈ ℂ)
4241ad2antlr 727 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (normop𝑇) ∈ ℂ)
4321recnd 11162 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (norm𝑥) ∈ ℂ)
4442, 43, 43mulassd 11157 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
45 simpr 484 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
46 ax-his3 31046 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4742, 45, 45, 46syl3anc 1373 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
4820recnd 11162 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
4948sqvald 14068 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = ((norm𝑥) · (norm𝑥)))
50 normsq 31096 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((norm𝑥)↑2) = (𝑥 ·ih 𝑥))
5149, 50eqtr3d 2766 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ((norm𝑥) · (norm𝑥)) = (𝑥 ·ih 𝑥))
5251oveq2d 7369 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5352adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ((norm𝑥) · (norm𝑥))) = ((normop𝑇) · (𝑥 ·ih 𝑥)))
5447, 53eqtr4d 2767 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · 𝑥) ·ih 𝑥) = ((normop𝑇) · ((norm𝑥) · (norm𝑥))))
5544, 54eqtr4d 2767 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = (((normop𝑇) · 𝑥) ·ih 𝑥))
56 hoif 31716 . . . . . . . . . . 11 Iop : ℋ–1-1-onto→ ℋ
57 f1of 6768 . . . . . . . . . . 11 ( Iop : ℋ–1-1-onto→ ℋ → Iop : ℋ⟶ ℋ)
5856, 57mp1i 13 . . . . . . . . . 10 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → Iop : ℋ⟶ ℋ)
59 homval 31703 . . . . . . . . . 10 (((normop𝑇) ∈ ℂ ∧ Iop : ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
6042, 58, 45, 59syl3anc 1373 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · ( Iop𝑥)))
61 hoival 31717 . . . . . . . . . . 11 (𝑥 ∈ ℋ → ( Iop𝑥) = 𝑥)
6261oveq2d 7369 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6362adantl 481 . . . . . . . . 9 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((normop𝑇) · ( Iop𝑥)) = ((normop𝑇) · 𝑥))
6460, 63eqtrd 2764 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) ·op Iop )‘𝑥) = ((normop𝑇) · 𝑥))
6564oveq1d 7368 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥) = (((normop𝑇) · 𝑥) ·ih 𝑥))
6655, 65eqtr4d 2767 . . . . . 6 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (((normop𝑇) · (norm𝑥)) · (norm𝑥)) = ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
6740, 66breqtrd 5121 . . . . 5 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) · (norm𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
685, 22, 11, 26, 67letrd 11291 . . . 4 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (abs‘((𝑇𝑥) ·ih 𝑥)) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
692, 5, 11, 13, 68letrd 11291 . . 3 (((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
7069ralrimiva 3121 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥))
71 leop2 32086 . . 3 ((𝑇 ∈ HrmOp ∧ ((normop𝑇) ·op Iop ) ∈ HrmOp) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
728, 71sylan2 593 . 2 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → (𝑇op ((normop𝑇) ·op Iop ) ↔ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝑥) ≤ ((((normop𝑇) ·op Iop )‘𝑥) ·ih 𝑥)))
7370, 72mpbird 257 1 ((𝑇 ∈ HrmOp ∧ (normop𝑇) ∈ ℝ) → 𝑇op ((normop𝑇) ·op Iop ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   · cmul 11033  cle 11169  2c2 12201  cexp 13986  abscabs 15159  chba 30881   · csm 30883   ·ih csp 30884  normcno 30885   ·op chot 30901   Iop chio 30906  normopcnop 30907  LinOpclo 30909  BndLinOpcbo 30910  HrmOpcho 30912  op cleo 30920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-t1 23217  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ssp 30684  df-ph 30775  df-cbn 30825  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215  df-shs 31270  df-pjh 31357  df-hosum 31692  df-homul 31693  df-hodif 31694  df-h0op 31710  df-iop 31711  df-nmop 31801  df-lnop 31803  df-bdop 31804  df-hmop 31806  df-leop 31814
This theorem is referenced by:  nmopleid  32101
  Copyright terms: Public domain W3C validator