| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bramul | Structured version Visualization version GIF version | ||
| Description: Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bramul | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his3 31046 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ℎ 𝐶) ·ih 𝐴) = (𝐵 · (𝐶 ·ih 𝐴))) | |
| 2 | 1 | 3comr 1125 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐵 ·ℎ 𝐶) ·ih 𝐴) = (𝐵 · (𝐶 ·ih 𝐴))) |
| 3 | hvmulcl 30975 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
| 4 | braval 31906 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = ((𝐵 ·ℎ 𝐶) ·ih 𝐴)) | |
| 5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = ((𝐵 ·ℎ 𝐶) ·ih 𝐴)) |
| 6 | 5 | 3impb 1114 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = ((𝐵 ·ℎ 𝐶) ·ih 𝐴)) |
| 7 | braval 31906 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) | |
| 8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) |
| 9 | 8 | oveq2d 7369 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · ((bra‘𝐴)‘𝐶)) = (𝐵 · (𝐶 ·ih 𝐴))) |
| 10 | 2, 6, 9 | 3eqtr4d 2774 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 · cmul 11033 ℋchba 30881 ·ℎ csm 30883 ·ih csp 30884 bracbr 30918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-hilex 30961 ax-hfvmul 30967 ax-his3 31046 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-bra 31812 |
| This theorem is referenced by: bralnfn 31910 |
| Copyright terms: Public domain | W3C validator |