![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bramul | Structured version Visualization version GIF version |
Description: Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bramul | β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((braβπ΄)β(π΅ Β·β πΆ)) = (π΅ Β· ((braβπ΄)βπΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his3 30604 | . . 3 β’ ((π΅ β β β§ πΆ β β β§ π΄ β β) β ((π΅ Β·β πΆ) Β·ih π΄) = (π΅ Β· (πΆ Β·ih π΄))) | |
2 | 1 | 3comr 1123 | . 2 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((π΅ Β·β πΆ) Β·ih π΄) = (π΅ Β· (πΆ Β·ih π΄))) |
3 | hvmulcl 30533 | . . . 4 β’ ((π΅ β β β§ πΆ β β) β (π΅ Β·β πΆ) β β) | |
4 | braval 31464 | . . . 4 β’ ((π΄ β β β§ (π΅ Β·β πΆ) β β) β ((braβπ΄)β(π΅ Β·β πΆ)) = ((π΅ Β·β πΆ) Β·ih π΄)) | |
5 | 3, 4 | sylan2 591 | . . 3 β’ ((π΄ β β β§ (π΅ β β β§ πΆ β β)) β ((braβπ΄)β(π΅ Β·β πΆ)) = ((π΅ Β·β πΆ) Β·ih π΄)) |
6 | 5 | 3impb 1113 | . 2 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((braβπ΄)β(π΅ Β·β πΆ)) = ((π΅ Β·β πΆ) Β·ih π΄)) |
7 | braval 31464 | . . . 4 β’ ((π΄ β β β§ πΆ β β) β ((braβπ΄)βπΆ) = (πΆ Β·ih π΄)) | |
8 | 7 | 3adant2 1129 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((braβπ΄)βπΆ) = (πΆ Β·ih π΄)) |
9 | 8 | oveq2d 7427 | . 2 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β (π΅ Β· ((braβπ΄)βπΆ)) = (π΅ Β· (πΆ Β·ih π΄))) |
10 | 2, 6, 9 | 3eqtr4d 2780 | 1 β’ ((π΄ β β β§ π΅ β β β§ πΆ β β) β ((braβπ΄)β(π΅ Β·β πΆ)) = (π΅ Β· ((braβπ΄)βπΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 βcc 11110 Β· cmul 11117 βchba 30439 Β·β csm 30441 Β·ih csp 30442 bracbr 30476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-hilex 30519 ax-hfvmul 30525 ax-his3 30604 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-bra 31370 |
This theorem is referenced by: bralnfn 31468 |
Copyright terms: Public domain | W3C validator |