HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bramul Structured version   Visualization version   GIF version

Theorem bramul 31882
Description: Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bramul ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 · 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶)))

Proof of Theorem bramul
StepHypRef Expression
1 ax-his3 31020 . . 3 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 · 𝐶) ·ih 𝐴) = (𝐵 · (𝐶 ·ih 𝐴)))
213comr 1125 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐵 · 𝐶) ·ih 𝐴) = (𝐵 · (𝐶 ·ih 𝐴)))
3 hvmulcl 30949 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
4 braval 31880 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → ((bra‘𝐴)‘(𝐵 · 𝐶)) = ((𝐵 · 𝐶) ·ih 𝐴))
53, 4sylan2 593 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴)‘(𝐵 · 𝐶)) = ((𝐵 · 𝐶) ·ih 𝐴))
653impb 1114 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 · 𝐶)) = ((𝐵 · 𝐶) ·ih 𝐴))
7 braval 31880 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴))
873adant2 1131 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴))
98oveq2d 7406 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · ((bra‘𝐴)‘𝐶)) = (𝐵 · (𝐶 ·ih 𝐴)))
102, 6, 93eqtr4d 2775 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 · 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073   · cmul 11080  chba 30855   · csm 30857   ·ih csp 30858  bracbr 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hilex 30935  ax-hfvmul 30941  ax-his3 31020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-bra 31786
This theorem is referenced by:  bralnfn  31884
  Copyright terms: Public domain W3C validator