Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > bramul | Structured version Visualization version GIF version |
Description: Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bramul | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his3 29165 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ℎ 𝐶) ·ih 𝐴) = (𝐵 · (𝐶 ·ih 𝐴))) | |
2 | 1 | 3comr 1127 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐵 ·ℎ 𝐶) ·ih 𝐴) = (𝐵 · (𝐶 ·ih 𝐴))) |
3 | hvmulcl 29094 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | braval 30025 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = ((𝐵 ·ℎ 𝐶) ·ih 𝐴)) | |
5 | 3, 4 | sylan2 596 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = ((𝐵 ·ℎ 𝐶) ·ih 𝐴)) |
6 | 5 | 3impb 1117 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = ((𝐵 ·ℎ 𝐶) ·ih 𝐴)) |
7 | braval 30025 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) | |
8 | 7 | 3adant2 1133 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘𝐶) = (𝐶 ·ih 𝐴)) |
9 | 8 | oveq2d 7229 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · ((bra‘𝐴)‘𝐶)) = (𝐵 · (𝐶 ·ih 𝐴))) |
10 | 2, 6, 9 | 3eqtr4d 2787 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 · cmul 10734 ℋchba 29000 ·ℎ csm 29002 ·ih csp 29003 bracbr 29037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-hilex 29080 ax-hfvmul 29086 ax-his3 29165 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-bra 29931 |
This theorem is referenced by: bralnfn 30029 |
Copyright terms: Public domain | W3C validator |