Proof of Theorem normlem9
| Step | Hyp | Ref
| Expression |
| 1 | | normlem8.1 |
. . . 4
⊢ 𝐴 ∈ ℋ |
| 2 | | normlem8.2 |
. . . 4
⊢ 𝐵 ∈ ℋ |
| 3 | 1, 2 | hvsubvali 31039 |
. . 3
⊢ (𝐴 −ℎ
𝐵) = (𝐴 +ℎ (-1
·ℎ 𝐵)) |
| 4 | | normlem8.3 |
. . . 4
⊢ 𝐶 ∈ ℋ |
| 5 | | normlem8.4 |
. . . 4
⊢ 𝐷 ∈ ℋ |
| 6 | 4, 5 | hvsubvali 31039 |
. . 3
⊢ (𝐶 −ℎ
𝐷) = (𝐶 +ℎ (-1
·ℎ 𝐷)) |
| 7 | 3, 6 | oveq12i 7443 |
. 2
⊢ ((𝐴 −ℎ
𝐵)
·ih (𝐶 −ℎ 𝐷)) = ((𝐴 +ℎ (-1
·ℎ 𝐵)) ·ih
(𝐶 +ℎ (-1
·ℎ 𝐷))) |
| 8 | | neg1cn 12380 |
. . . 4
⊢ -1 ∈
ℂ |
| 9 | 8, 2 | hvmulcli 31033 |
. . 3
⊢ (-1
·ℎ 𝐵) ∈ ℋ |
| 10 | 8, 5 | hvmulcli 31033 |
. . 3
⊢ (-1
·ℎ 𝐷) ∈ ℋ |
| 11 | 1, 9, 4, 10 | normlem8 31136 |
. 2
⊢ ((𝐴 +ℎ (-1
·ℎ 𝐵)) ·ih
(𝐶 +ℎ (-1
·ℎ 𝐷))) = (((𝐴 ·ih 𝐶) + ((-1
·ℎ 𝐵) ·ih (-1
·ℎ 𝐷))) + ((𝐴 ·ih (-1
·ℎ 𝐷)) + ((-1 ·ℎ
𝐵)
·ih 𝐶))) |
| 12 | | ax-his3 31103 |
. . . . . . 7
⊢ ((-1
∈ ℂ ∧ 𝐵
∈ ℋ ∧ (-1 ·ℎ 𝐷) ∈ ℋ) → ((-1
·ℎ 𝐵) ·ih (-1
·ℎ 𝐷)) = (-1 · (𝐵 ·ih (-1
·ℎ 𝐷)))) |
| 13 | 8, 2, 10, 12 | mp3an 1463 |
. . . . . 6
⊢ ((-1
·ℎ 𝐵) ·ih (-1
·ℎ 𝐷)) = (-1 · (𝐵 ·ih (-1
·ℎ 𝐷))) |
| 14 | | his5 31105 |
. . . . . . . 8
⊢ ((-1
∈ ℂ ∧ 𝐵
∈ ℋ ∧ 𝐷
∈ ℋ) → (𝐵
·ih (-1 ·ℎ
𝐷)) = ((∗‘-1)
· (𝐵
·ih 𝐷))) |
| 15 | 8, 2, 5, 14 | mp3an 1463 |
. . . . . . 7
⊢ (𝐵
·ih (-1 ·ℎ
𝐷)) = ((∗‘-1)
· (𝐵
·ih 𝐷)) |
| 16 | 15 | oveq2i 7442 |
. . . . . 6
⊢ (-1
· (𝐵
·ih (-1 ·ℎ
𝐷))) = (-1 ·
((∗‘-1) · (𝐵 ·ih 𝐷))) |
| 17 | | neg1rr 12381 |
. . . . . . . . . . 11
⊢ -1 ∈
ℝ |
| 18 | | cjre 15178 |
. . . . . . . . . . 11
⊢ (-1
∈ ℝ → (∗‘-1) = -1) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∗‘-1) = -1 |
| 20 | 19 | oveq2i 7442 |
. . . . . . . . 9
⊢ (-1
· (∗‘-1)) = (-1 · -1) |
| 21 | | ax-1cn 11213 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 22 | 21, 21 | mul2negi 11711 |
. . . . . . . . 9
⊢ (-1
· -1) = (1 · 1) |
| 23 | 21 | mullidi 11266 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
| 24 | 20, 22, 23 | 3eqtri 2769 |
. . . . . . . 8
⊢ (-1
· (∗‘-1)) = 1 |
| 25 | 24 | oveq1i 7441 |
. . . . . . 7
⊢ ((-1
· (∗‘-1)) · (𝐵 ·ih 𝐷)) = (1 · (𝐵
·ih 𝐷)) |
| 26 | 8 | cjcli 15208 |
. . . . . . . 8
⊢
(∗‘-1) ∈ ℂ |
| 27 | 2, 5 | hicli 31100 |
. . . . . . . 8
⊢ (𝐵
·ih 𝐷) ∈ ℂ |
| 28 | 8, 26, 27 | mulassi 11272 |
. . . . . . 7
⊢ ((-1
· (∗‘-1)) · (𝐵 ·ih 𝐷)) = (-1 ·
((∗‘-1) · (𝐵 ·ih 𝐷))) |
| 29 | 27 | mullidi 11266 |
. . . . . . 7
⊢ (1
· (𝐵
·ih 𝐷)) = (𝐵 ·ih 𝐷) |
| 30 | 25, 28, 29 | 3eqtr3i 2773 |
. . . . . 6
⊢ (-1
· ((∗‘-1) · (𝐵 ·ih 𝐷))) = (𝐵 ·ih 𝐷) |
| 31 | 13, 16, 30 | 3eqtri 2769 |
. . . . 5
⊢ ((-1
·ℎ 𝐵) ·ih (-1
·ℎ 𝐷)) = (𝐵 ·ih 𝐷) |
| 32 | 31 | oveq2i 7442 |
. . . 4
⊢ ((𝐴
·ih 𝐶) + ((-1 ·ℎ
𝐵)
·ih (-1 ·ℎ
𝐷))) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) |
| 33 | | his5 31105 |
. . . . . . . 8
⊢ ((-1
∈ ℂ ∧ 𝐴
∈ ℋ ∧ 𝐷
∈ ℋ) → (𝐴
·ih (-1 ·ℎ
𝐷)) = ((∗‘-1)
· (𝐴
·ih 𝐷))) |
| 34 | 8, 1, 5, 33 | mp3an 1463 |
. . . . . . 7
⊢ (𝐴
·ih (-1 ·ℎ
𝐷)) = ((∗‘-1)
· (𝐴
·ih 𝐷)) |
| 35 | 19 | oveq1i 7441 |
. . . . . . 7
⊢
((∗‘-1) · (𝐴 ·ih 𝐷)) = (-1 · (𝐴
·ih 𝐷)) |
| 36 | 1, 5 | hicli 31100 |
. . . . . . . 8
⊢ (𝐴
·ih 𝐷) ∈ ℂ |
| 37 | 36 | mulm1i 11708 |
. . . . . . 7
⊢ (-1
· (𝐴
·ih 𝐷)) = -(𝐴 ·ih 𝐷) |
| 38 | 34, 35, 37 | 3eqtri 2769 |
. . . . . 6
⊢ (𝐴
·ih (-1 ·ℎ
𝐷)) = -(𝐴 ·ih 𝐷) |
| 39 | | ax-his3 31103 |
. . . . . . . 8
⊢ ((-1
∈ ℂ ∧ 𝐵
∈ ℋ ∧ 𝐶
∈ ℋ) → ((-1 ·ℎ 𝐵)
·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) |
| 40 | 8, 2, 4, 39 | mp3an 1463 |
. . . . . . 7
⊢ ((-1
·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵
·ih 𝐶)) |
| 41 | 2, 4 | hicli 31100 |
. . . . . . . 8
⊢ (𝐵
·ih 𝐶) ∈ ℂ |
| 42 | 41 | mulm1i 11708 |
. . . . . . 7
⊢ (-1
· (𝐵
·ih 𝐶)) = -(𝐵 ·ih 𝐶) |
| 43 | 40, 42 | eqtri 2765 |
. . . . . 6
⊢ ((-1
·ℎ 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶) |
| 44 | 38, 43 | oveq12i 7443 |
. . . . 5
⊢ ((𝐴
·ih (-1 ·ℎ
𝐷)) + ((-1
·ℎ 𝐵) ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶)) |
| 45 | 36, 41 | negdii 11593 |
. . . . 5
⊢ -((𝐴
·ih 𝐷) + (𝐵 ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶)) |
| 46 | 44, 45 | eqtr4i 2768 |
. . . 4
⊢ ((𝐴
·ih (-1 ·ℎ
𝐷)) + ((-1
·ℎ 𝐵) ·ih 𝐶)) = -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) |
| 47 | 32, 46 | oveq12i 7443 |
. . 3
⊢ (((𝐴
·ih 𝐶) + ((-1 ·ℎ
𝐵)
·ih (-1 ·ℎ
𝐷))) + ((𝐴 ·ih (-1
·ℎ 𝐷)) + ((-1 ·ℎ
𝐵)
·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) |
| 48 | 1, 4 | hicli 31100 |
. . . . 5
⊢ (𝐴
·ih 𝐶) ∈ ℂ |
| 49 | 48, 27 | addcli 11267 |
. . . 4
⊢ ((𝐴
·ih 𝐶) + (𝐵 ·ih 𝐷)) ∈
ℂ |
| 50 | 36, 41 | addcli 11267 |
. . . 4
⊢ ((𝐴
·ih 𝐷) + (𝐵 ·ih 𝐶)) ∈
ℂ |
| 51 | 49, 50 | negsubi 11587 |
. . 3
⊢ (((𝐴
·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) |
| 52 | 47, 51 | eqtri 2765 |
. 2
⊢ (((𝐴
·ih 𝐶) + ((-1 ·ℎ
𝐵)
·ih (-1 ·ℎ
𝐷))) + ((𝐴 ·ih (-1
·ℎ 𝐷)) + ((-1 ·ℎ
𝐵)
·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) |
| 53 | 7, 11, 52 | 3eqtri 2769 |
1
⊢ ((𝐴 −ℎ
𝐵)
·ih (𝐶 −ℎ 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) |