HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem9 Structured version   Visualization version   GIF version

Theorem normlem9 28901
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem8.1 𝐴 ∈ ℋ
normlem8.2 𝐵 ∈ ℋ
normlem8.3 𝐶 ∈ ℋ
normlem8.4 𝐷 ∈ ℋ
Assertion
Ref Expression
normlem9 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))

Proof of Theorem normlem9
StepHypRef Expression
1 normlem8.1 . . . 4 𝐴 ∈ ℋ
2 normlem8.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 28803 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 normlem8.3 . . . 4 𝐶 ∈ ℋ
5 normlem8.4 . . . 4 𝐷 ∈ ℋ
64, 5hvsubvali 28803 . . 3 (𝐶 𝐷) = (𝐶 + (-1 · 𝐷))
73, 6oveq12i 7147 . 2 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷)))
8 neg1cn 11739 . . . 4 -1 ∈ ℂ
98, 2hvmulcli 28797 . . 3 (-1 · 𝐵) ∈ ℋ
108, 5hvmulcli 28797 . . 3 (-1 · 𝐷) ∈ ℋ
111, 9, 4, 10normlem8 28900 . 2 ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷))) = (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)))
12 ax-his3 28867 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ) → ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷))))
138, 2, 10, 12mp3an 1458 . . . . . 6 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷)))
14 his5 28869 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷)))
158, 2, 5, 14mp3an 1458 . . . . . . 7 (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷))
1615oveq2i 7146 . . . . . 6 (-1 · (𝐵 ·ih (-1 · 𝐷))) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
17 neg1rr 11740 . . . . . . . . . . 11 -1 ∈ ℝ
18 cjre 14490 . . . . . . . . . . 11 (-1 ∈ ℝ → (∗‘-1) = -1)
1917, 18ax-mp 5 . . . . . . . . . 10 (∗‘-1) = -1
2019oveq2i 7146 . . . . . . . . 9 (-1 · (∗‘-1)) = (-1 · -1)
21 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
2221, 21mul2negi 11077 . . . . . . . . 9 (-1 · -1) = (1 · 1)
2321mulid2i 10635 . . . . . . . . 9 (1 · 1) = 1
2420, 22, 233eqtri 2825 . . . . . . . 8 (-1 · (∗‘-1)) = 1
2524oveq1i 7145 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (1 · (𝐵 ·ih 𝐷))
268cjcli 14520 . . . . . . . 8 (∗‘-1) ∈ ℂ
272, 5hicli 28864 . . . . . . . 8 (𝐵 ·ih 𝐷) ∈ ℂ
288, 26, 27mulassi 10641 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
2927mulid2i 10635 . . . . . . 7 (1 · (𝐵 ·ih 𝐷)) = (𝐵 ·ih 𝐷)
3025, 28, 293eqtr3i 2829 . . . . . 6 (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷))) = (𝐵 ·ih 𝐷)
3113, 16, 303eqtri 2825 . . . . 5 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (𝐵 ·ih 𝐷)
3231oveq2i 7146 . . . 4 ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷))
33 his5 28869 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷)))
348, 1, 5, 33mp3an 1458 . . . . . . 7 (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷))
3519oveq1i 7145 . . . . . . 7 ((∗‘-1) · (𝐴 ·ih 𝐷)) = (-1 · (𝐴 ·ih 𝐷))
361, 5hicli 28864 . . . . . . . 8 (𝐴 ·ih 𝐷) ∈ ℂ
3736mulm1i 11074 . . . . . . 7 (-1 · (𝐴 ·ih 𝐷)) = -(𝐴 ·ih 𝐷)
3834, 35, 373eqtri 2825 . . . . . 6 (𝐴 ·ih (-1 · 𝐷)) = -(𝐴 ·ih 𝐷)
39 ax-his3 28867 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
408, 2, 4, 39mp3an 1458 . . . . . . 7 ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))
412, 4hicli 28864 . . . . . . . 8 (𝐵 ·ih 𝐶) ∈ ℂ
4241mulm1i 11074 . . . . . . 7 (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)
4340, 42eqtri 2821 . . . . . 6 ((-1 · 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)
4438, 43oveq12i 7147 . . . . 5 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4536, 41negdii 10959 . . . . 5 -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4644, 45eqtr4i 2824 . . . 4 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))
4732, 46oveq12i 7147 . . 3 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
481, 4hicli 28864 . . . . 5 (𝐴 ·ih 𝐶) ∈ ℂ
4948, 27addcli 10636 . . . 4 ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) ∈ ℂ
5036, 41addcli 10636 . . . 4 ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) ∈ ℂ
5149, 50negsubi 10953 . . 3 (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
5247, 51eqtri 2821 . 2 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
537, 11, 523eqtri 2825 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  ccj 14447  chba 28702   + cva 28703   · csm 28704   ·ih csp 28705   cmv 28708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-hfvadd 28783  ax-hfvmul 28788  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-cj 14450  df-re 14451  df-im 14452  df-hvsub 28754
This theorem is referenced by:  bcseqi  28903  normlem9at  28904  normpari  28937  polid2i  28940
  Copyright terms: Public domain W3C validator