HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem9 Structured version   Visualization version   GIF version

Theorem normlem9 31147
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem8.1 𝐴 ∈ ℋ
normlem8.2 𝐵 ∈ ℋ
normlem8.3 𝐶 ∈ ℋ
normlem8.4 𝐷 ∈ ℋ
Assertion
Ref Expression
normlem9 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))

Proof of Theorem normlem9
StepHypRef Expression
1 normlem8.1 . . . 4 𝐴 ∈ ℋ
2 normlem8.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 31049 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 normlem8.3 . . . 4 𝐶 ∈ ℋ
5 normlem8.4 . . . 4 𝐷 ∈ ℋ
64, 5hvsubvali 31049 . . 3 (𝐶 𝐷) = (𝐶 + (-1 · 𝐷))
73, 6oveq12i 7443 . 2 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷)))
8 neg1cn 12378 . . . 4 -1 ∈ ℂ
98, 2hvmulcli 31043 . . 3 (-1 · 𝐵) ∈ ℋ
108, 5hvmulcli 31043 . . 3 (-1 · 𝐷) ∈ ℋ
111, 9, 4, 10normlem8 31146 . 2 ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷))) = (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)))
12 ax-his3 31113 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ) → ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷))))
138, 2, 10, 12mp3an 1460 . . . . . 6 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷)))
14 his5 31115 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷)))
158, 2, 5, 14mp3an 1460 . . . . . . 7 (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷))
1615oveq2i 7442 . . . . . 6 (-1 · (𝐵 ·ih (-1 · 𝐷))) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
17 neg1rr 12379 . . . . . . . . . . 11 -1 ∈ ℝ
18 cjre 15175 . . . . . . . . . . 11 (-1 ∈ ℝ → (∗‘-1) = -1)
1917, 18ax-mp 5 . . . . . . . . . 10 (∗‘-1) = -1
2019oveq2i 7442 . . . . . . . . 9 (-1 · (∗‘-1)) = (-1 · -1)
21 ax-1cn 11211 . . . . . . . . . 10 1 ∈ ℂ
2221, 21mul2negi 11709 . . . . . . . . 9 (-1 · -1) = (1 · 1)
2321mullidi 11264 . . . . . . . . 9 (1 · 1) = 1
2420, 22, 233eqtri 2767 . . . . . . . 8 (-1 · (∗‘-1)) = 1
2524oveq1i 7441 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (1 · (𝐵 ·ih 𝐷))
268cjcli 15205 . . . . . . . 8 (∗‘-1) ∈ ℂ
272, 5hicli 31110 . . . . . . . 8 (𝐵 ·ih 𝐷) ∈ ℂ
288, 26, 27mulassi 11270 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
2927mullidi 11264 . . . . . . 7 (1 · (𝐵 ·ih 𝐷)) = (𝐵 ·ih 𝐷)
3025, 28, 293eqtr3i 2771 . . . . . 6 (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷))) = (𝐵 ·ih 𝐷)
3113, 16, 303eqtri 2767 . . . . 5 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (𝐵 ·ih 𝐷)
3231oveq2i 7442 . . . 4 ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷))
33 his5 31115 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷)))
348, 1, 5, 33mp3an 1460 . . . . . . 7 (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷))
3519oveq1i 7441 . . . . . . 7 ((∗‘-1) · (𝐴 ·ih 𝐷)) = (-1 · (𝐴 ·ih 𝐷))
361, 5hicli 31110 . . . . . . . 8 (𝐴 ·ih 𝐷) ∈ ℂ
3736mulm1i 11706 . . . . . . 7 (-1 · (𝐴 ·ih 𝐷)) = -(𝐴 ·ih 𝐷)
3834, 35, 373eqtri 2767 . . . . . 6 (𝐴 ·ih (-1 · 𝐷)) = -(𝐴 ·ih 𝐷)
39 ax-his3 31113 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
408, 2, 4, 39mp3an 1460 . . . . . . 7 ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))
412, 4hicli 31110 . . . . . . . 8 (𝐵 ·ih 𝐶) ∈ ℂ
4241mulm1i 11706 . . . . . . 7 (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)
4340, 42eqtri 2763 . . . . . 6 ((-1 · 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)
4438, 43oveq12i 7443 . . . . 5 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4536, 41negdii 11591 . . . . 5 -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4644, 45eqtr4i 2766 . . . 4 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))
4732, 46oveq12i 7443 . . 3 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
481, 4hicli 31110 . . . . 5 (𝐴 ·ih 𝐶) ∈ ℂ
4948, 27addcli 11265 . . . 4 ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) ∈ ℂ
5036, 41addcli 11265 . . . 4 ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) ∈ ℂ
5149, 50negsubi 11585 . . 3 (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
5247, 51eqtri 2763 . 2 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
537, 11, 523eqtri 2767 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  ccj 15132  chba 30948   + cva 30949   · csm 30950   ·ih csp 30951   cmv 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hfvadd 31029  ax-hfvmul 31034  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137  df-hvsub 31000
This theorem is referenced by:  bcseqi  31149  normlem9at  31150  normpari  31183  polid2i  31186
  Copyright terms: Public domain W3C validator