HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem9 Structured version   Visualization version   GIF version

Theorem normlem9 29381
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem8.1 𝐴 ∈ ℋ
normlem8.2 𝐵 ∈ ℋ
normlem8.3 𝐶 ∈ ℋ
normlem8.4 𝐷 ∈ ℋ
Assertion
Ref Expression
normlem9 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))

Proof of Theorem normlem9
StepHypRef Expression
1 normlem8.1 . . . 4 𝐴 ∈ ℋ
2 normlem8.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 29283 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 normlem8.3 . . . 4 𝐶 ∈ ℋ
5 normlem8.4 . . . 4 𝐷 ∈ ℋ
64, 5hvsubvali 29283 . . 3 (𝐶 𝐷) = (𝐶 + (-1 · 𝐷))
73, 6oveq12i 7267 . 2 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷)))
8 neg1cn 12017 . . . 4 -1 ∈ ℂ
98, 2hvmulcli 29277 . . 3 (-1 · 𝐵) ∈ ℋ
108, 5hvmulcli 29277 . . 3 (-1 · 𝐷) ∈ ℋ
111, 9, 4, 10normlem8 29380 . 2 ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷))) = (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)))
12 ax-his3 29347 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ) → ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷))))
138, 2, 10, 12mp3an 1459 . . . . . 6 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷)))
14 his5 29349 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷)))
158, 2, 5, 14mp3an 1459 . . . . . . 7 (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷))
1615oveq2i 7266 . . . . . 6 (-1 · (𝐵 ·ih (-1 · 𝐷))) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
17 neg1rr 12018 . . . . . . . . . . 11 -1 ∈ ℝ
18 cjre 14778 . . . . . . . . . . 11 (-1 ∈ ℝ → (∗‘-1) = -1)
1917, 18ax-mp 5 . . . . . . . . . 10 (∗‘-1) = -1
2019oveq2i 7266 . . . . . . . . 9 (-1 · (∗‘-1)) = (-1 · -1)
21 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
2221, 21mul2negi 11353 . . . . . . . . 9 (-1 · -1) = (1 · 1)
2321mulid2i 10911 . . . . . . . . 9 (1 · 1) = 1
2420, 22, 233eqtri 2770 . . . . . . . 8 (-1 · (∗‘-1)) = 1
2524oveq1i 7265 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (1 · (𝐵 ·ih 𝐷))
268cjcli 14808 . . . . . . . 8 (∗‘-1) ∈ ℂ
272, 5hicli 29344 . . . . . . . 8 (𝐵 ·ih 𝐷) ∈ ℂ
288, 26, 27mulassi 10917 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
2927mulid2i 10911 . . . . . . 7 (1 · (𝐵 ·ih 𝐷)) = (𝐵 ·ih 𝐷)
3025, 28, 293eqtr3i 2774 . . . . . 6 (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷))) = (𝐵 ·ih 𝐷)
3113, 16, 303eqtri 2770 . . . . 5 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (𝐵 ·ih 𝐷)
3231oveq2i 7266 . . . 4 ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷))
33 his5 29349 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷)))
348, 1, 5, 33mp3an 1459 . . . . . . 7 (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷))
3519oveq1i 7265 . . . . . . 7 ((∗‘-1) · (𝐴 ·ih 𝐷)) = (-1 · (𝐴 ·ih 𝐷))
361, 5hicli 29344 . . . . . . . 8 (𝐴 ·ih 𝐷) ∈ ℂ
3736mulm1i 11350 . . . . . . 7 (-1 · (𝐴 ·ih 𝐷)) = -(𝐴 ·ih 𝐷)
3834, 35, 373eqtri 2770 . . . . . 6 (𝐴 ·ih (-1 · 𝐷)) = -(𝐴 ·ih 𝐷)
39 ax-his3 29347 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
408, 2, 4, 39mp3an 1459 . . . . . . 7 ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))
412, 4hicli 29344 . . . . . . . 8 (𝐵 ·ih 𝐶) ∈ ℂ
4241mulm1i 11350 . . . . . . 7 (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)
4340, 42eqtri 2766 . . . . . 6 ((-1 · 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)
4438, 43oveq12i 7267 . . . . 5 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4536, 41negdii 11235 . . . . 5 -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4644, 45eqtr4i 2769 . . . 4 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))
4732, 46oveq12i 7267 . . 3 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
481, 4hicli 29344 . . . . 5 (𝐴 ·ih 𝐶) ∈ ℂ
4948, 27addcli 10912 . . . 4 ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) ∈ ℂ
5036, 41addcli 10912 . . . 4 ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) ∈ ℂ
5149, 50negsubi 11229 . . 3 (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
5247, 51eqtri 2766 . 2 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
537, 11, 523eqtri 2770 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  ccj 14735  chba 29182   + cva 29183   · csm 29184   ·ih csp 29185   cmv 29188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hfvadd 29263  ax-hfvmul 29268  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-hvsub 29234
This theorem is referenced by:  bcseqi  29383  normlem9at  29384  normpari  29417  polid2i  29420
  Copyright terms: Public domain W3C validator