HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem9 Structured version   Visualization version   GIF version

Theorem normlem9 31097
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem8.1 𝐴 ∈ ℋ
normlem8.2 𝐵 ∈ ℋ
normlem8.3 𝐶 ∈ ℋ
normlem8.4 𝐷 ∈ ℋ
Assertion
Ref Expression
normlem9 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))

Proof of Theorem normlem9
StepHypRef Expression
1 normlem8.1 . . . 4 𝐴 ∈ ℋ
2 normlem8.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 30999 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 normlem8.3 . . . 4 𝐶 ∈ ℋ
5 normlem8.4 . . . 4 𝐷 ∈ ℋ
64, 5hvsubvali 30999 . . 3 (𝐶 𝐷) = (𝐶 + (-1 · 𝐷))
73, 6oveq12i 7381 . 2 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷)))
8 neg1cn 12147 . . . 4 -1 ∈ ℂ
98, 2hvmulcli 30993 . . 3 (-1 · 𝐵) ∈ ℋ
108, 5hvmulcli 30993 . . 3 (-1 · 𝐷) ∈ ℋ
111, 9, 4, 10normlem8 31096 . 2 ((𝐴 + (-1 · 𝐵)) ·ih (𝐶 + (-1 · 𝐷))) = (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)))
12 ax-his3 31063 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ) → ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷))))
138, 2, 10, 12mp3an 1463 . . . . . 6 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (-1 · (𝐵 ·ih (-1 · 𝐷)))
14 his5 31065 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷)))
158, 2, 5, 14mp3an 1463 . . . . . . 7 (𝐵 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐵 ·ih 𝐷))
1615oveq2i 7380 . . . . . 6 (-1 · (𝐵 ·ih (-1 · 𝐷))) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
17 neg1rr 12148 . . . . . . . . . . 11 -1 ∈ ℝ
18 cjre 15081 . . . . . . . . . . 11 (-1 ∈ ℝ → (∗‘-1) = -1)
1917, 18ax-mp 5 . . . . . . . . . 10 (∗‘-1) = -1
2019oveq2i 7380 . . . . . . . . 9 (-1 · (∗‘-1)) = (-1 · -1)
21 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
2221, 21mul2negi 11602 . . . . . . . . 9 (-1 · -1) = (1 · 1)
2321mullidi 11155 . . . . . . . . 9 (1 · 1) = 1
2420, 22, 233eqtri 2756 . . . . . . . 8 (-1 · (∗‘-1)) = 1
2524oveq1i 7379 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (1 · (𝐵 ·ih 𝐷))
268cjcli 15111 . . . . . . . 8 (∗‘-1) ∈ ℂ
272, 5hicli 31060 . . . . . . . 8 (𝐵 ·ih 𝐷) ∈ ℂ
288, 26, 27mulassi 11161 . . . . . . 7 ((-1 · (∗‘-1)) · (𝐵 ·ih 𝐷)) = (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷)))
2927mullidi 11155 . . . . . . 7 (1 · (𝐵 ·ih 𝐷)) = (𝐵 ·ih 𝐷)
3025, 28, 293eqtr3i 2760 . . . . . 6 (-1 · ((∗‘-1) · (𝐵 ·ih 𝐷))) = (𝐵 ·ih 𝐷)
3113, 16, 303eqtri 2756 . . . . 5 ((-1 · 𝐵) ·ih (-1 · 𝐷)) = (𝐵 ·ih 𝐷)
3231oveq2i 7380 . . . 4 ((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷))
33 his5 31065 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷)))
348, 1, 5, 33mp3an 1463 . . . . . . 7 (𝐴 ·ih (-1 · 𝐷)) = ((∗‘-1) · (𝐴 ·ih 𝐷))
3519oveq1i 7379 . . . . . . 7 ((∗‘-1) · (𝐴 ·ih 𝐷)) = (-1 · (𝐴 ·ih 𝐷))
361, 5hicli 31060 . . . . . . . 8 (𝐴 ·ih 𝐷) ∈ ℂ
3736mulm1i 11599 . . . . . . 7 (-1 · (𝐴 ·ih 𝐷)) = -(𝐴 ·ih 𝐷)
3834, 35, 373eqtri 2756 . . . . . 6 (𝐴 ·ih (-1 · 𝐷)) = -(𝐴 ·ih 𝐷)
39 ax-his3 31063 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶)))
408, 2, 4, 39mp3an 1463 . . . . . . 7 ((-1 · 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))
412, 4hicli 31060 . . . . . . . 8 (𝐵 ·ih 𝐶) ∈ ℂ
4241mulm1i 11599 . . . . . . 7 (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)
4340, 42eqtri 2752 . . . . . 6 ((-1 · 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)
4438, 43oveq12i 7381 . . . . 5 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4536, 41negdii 11482 . . . . 5 -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) = (-(𝐴 ·ih 𝐷) + -(𝐵 ·ih 𝐶))
4644, 45eqtr4i 2755 . . . 4 ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶)) = -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))
4732, 46oveq12i 7381 . . 3 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
481, 4hicli 31060 . . . . 5 (𝐴 ·ih 𝐶) ∈ ℂ
4948, 27addcli 11156 . . . 4 ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) ∈ ℂ
5036, 41addcli 11156 . . . 4 ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)) ∈ ℂ
5149, 50negsubi 11476 . . 3 (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) + -((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
5247, 51eqtri 2752 . 2 (((𝐴 ·ih 𝐶) + ((-1 · 𝐵) ·ih (-1 · 𝐷))) + ((𝐴 ·ih (-1 · 𝐷)) + ((-1 · 𝐵) ·ih 𝐶))) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
537, 11, 523eqtri 2756 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = (((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐷)) − ((𝐴 ·ih 𝐷) + (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382  ccj 15038  chba 30898   + cva 30899   · csm 30900   ·ih csp 30901   cmv 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-hfvadd 30979  ax-hfvmul 30984  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043  df-hvsub 30950
This theorem is referenced by:  bcseqi  31099  normlem9at  31100  normpari  31133  polid2i  31136
  Copyright terms: Public domain W3C validator