HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid2i Structured version   Visualization version   GIF version

Theorem polid2i 31138
Description: Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid2.1 𝐴 ∈ ℋ
polid2.2 𝐵 ∈ ℋ
polid2.3 𝐶 ∈ ℋ
polid2.4 𝐷 ∈ ℋ
Assertion
Ref Expression
polid2i (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) / 4)

Proof of Theorem polid2i
StepHypRef Expression
1 4cn 12325 . 2 4 ∈ ℂ
2 polid2.1 . . 3 𝐴 ∈ ℋ
3 polid2.2 . . 3 𝐵 ∈ ℋ
42, 3hicli 31062 . 2 (𝐴 ·ih 𝐵) ∈ ℂ
5 4ne0 12348 . 2 4 ≠ 0
6 2cn 12315 . . . 4 2 ∈ ℂ
7 polid2.3 . . . . . 6 𝐶 ∈ ℋ
8 polid2.4 . . . . . 6 𝐷 ∈ ℋ
97, 8hicli 31062 . . . . 5 (𝐶 ·ih 𝐷) ∈ ℂ
104, 9addcli 11241 . . . 4 ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) ∈ ℂ
114, 9subcli 11559 . . . 4 ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)) ∈ ℂ
126, 10, 11adddii 11247 . . 3 (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))) = ((2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) + (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
13 ppncan 11525 . . . . . . 7 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐶 ·ih 𝐷) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵)))
144, 9, 4, 13mp3an 1463 . . . . . 6 (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵))
1542timesi 12378 . . . . . 6 (2 · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵))
1614, 15eqtr4i 2761 . . . . 5 (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = (2 · (𝐴 ·ih 𝐵))
1716oveq2i 7416 . . . 4 (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))) = (2 · (2 · (𝐴 ·ih 𝐵)))
186, 6, 4mulassi 11246 . . . 4 ((2 · 2) · (𝐴 ·ih 𝐵)) = (2 · (2 · (𝐴 ·ih 𝐵)))
19 2t2e4 12404 . . . . 5 (2 · 2) = 4
2019oveq1i 7415 . . . 4 ((2 · 2) · (𝐴 ·ih 𝐵)) = (4 · (𝐴 ·ih 𝐵))
2117, 18, 203eqtr2ri 2765 . . 3 (4 · (𝐴 ·ih 𝐵)) = (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
222, 8hicli 31062 . . . . . . 7 (𝐴 ·ih 𝐷) ∈ ℂ
237, 3hicli 31062 . . . . . . 7 (𝐶 ·ih 𝐵) ∈ ℂ
2422, 23addcli 11241 . . . . . 6 ((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) ∈ ℂ
2524, 10, 10pnncani 11578 . . . . 5 ((((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))) = (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
262, 7, 8, 3normlem8 31098 . . . . . 6 ((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) = (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
272, 7, 8, 3normlem9 31099 . . . . . 6 ((𝐴 𝐶) ·ih (𝐷 𝐵)) = (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
2826, 27oveq12i 7417 . . . . 5 (((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) = ((((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))))
29102timesi 12378 . . . . 5 (2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) = (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
3025, 28, 293eqtr4i 2768 . . . 4 (((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) = (2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
31 ax-icn 11188 . . . . . . . . . 10 i ∈ ℂ
3231, 7hvmulcli 30995 . . . . . . . . 9 (i · 𝐶) ∈ ℋ
3331, 3hvmulcli 30995 . . . . . . . . 9 (i · 𝐵) ∈ ℋ
342, 32, 8, 33normlem8 31098 . . . . . . . 8 ((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) = (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
352, 32, 8, 33normlem9 31099 . . . . . . . 8 ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))) = (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
3634, 35oveq12i 7417 . . . . . . 7 (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))) = ((((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))))
3732, 33hicli 31062 . . . . . . . . 9 ((i · 𝐶) ·ih (i · 𝐵)) ∈ ℂ
3822, 37addcli 11241 . . . . . . . 8 ((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) ∈ ℂ
392, 33hicli 31062 . . . . . . . . 9 (𝐴 ·ih (i · 𝐵)) ∈ ℂ
4032, 8hicli 31062 . . . . . . . . 9 ((i · 𝐶) ·ih 𝐷) ∈ ℂ
4139, 40addcli 11241 . . . . . . . 8 ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) ∈ ℂ
4238, 41, 41pnncani 11578 . . . . . . 7 ((((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))) = (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
43412timesi 12378 . . . . . . . 8 (2 · ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
44 his5 31067 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (i · 𝐵)) = ((∗‘i) · (𝐴 ·ih 𝐵)))
4531, 2, 3, 44mp3an 1463 . . . . . . . . . . 11 (𝐴 ·ih (i · 𝐵)) = ((∗‘i) · (𝐴 ·ih 𝐵))
46 cji 15178 . . . . . . . . . . . 12 (∗‘i) = -i
4746oveq1i 7415 . . . . . . . . . . 11 ((∗‘i) · (𝐴 ·ih 𝐵)) = (-i · (𝐴 ·ih 𝐵))
4845, 47eqtri 2758 . . . . . . . . . 10 (𝐴 ·ih (i · 𝐵)) = (-i · (𝐴 ·ih 𝐵))
49 ax-his3 31065 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((i · 𝐶) ·ih 𝐷) = (i · (𝐶 ·ih 𝐷)))
5031, 7, 8, 49mp3an 1463 . . . . . . . . . 10 ((i · 𝐶) ·ih 𝐷) = (i · (𝐶 ·ih 𝐷))
5148, 50oveq12i 7417 . . . . . . . . 9 ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) = ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))
5251oveq2i 7416 . . . . . . . 8 (2 · ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5343, 52eqtr3i 2760 . . . . . . 7 (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5436, 42, 533eqtri 2762 . . . . . 6 (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5554oveq2i 7416 . . . . 5 (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))) = (i · (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))))
56 negicn 11483 . . . . . . . 8 -i ∈ ℂ
5756, 4mulcli 11242 . . . . . . 7 (-i · (𝐴 ·ih 𝐵)) ∈ ℂ
5831, 9mulcli 11242 . . . . . . 7 (i · (𝐶 ·ih 𝐷)) ∈ ℂ
5957, 58addcli 11241 . . . . . 6 ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))) ∈ ℂ
606, 31, 59mul12i 11430 . . . . 5 (2 · (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))) = (i · (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))))
6131, 57, 58adddii 11247 . . . . . . 7 (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))) = ((i · (-i · (𝐴 ·ih 𝐵))) + (i · (i · (𝐶 ·ih 𝐷))))
6231, 31mulneg2i 11684 . . . . . . . . . . 11 (i · -i) = -(i · i)
63 ixi 11866 . . . . . . . . . . . 12 (i · i) = -1
6463negeqi 11475 . . . . . . . . . . 11 -(i · i) = --1
65 negneg1e1 12358 . . . . . . . . . . 11 --1 = 1
6662, 64, 653eqtri 2762 . . . . . . . . . 10 (i · -i) = 1
6766oveq1i 7415 . . . . . . . . 9 ((i · -i) · (𝐴 ·ih 𝐵)) = (1 · (𝐴 ·ih 𝐵))
6831, 56, 4mulassi 11246 . . . . . . . . 9 ((i · -i) · (𝐴 ·ih 𝐵)) = (i · (-i · (𝐴 ·ih 𝐵)))
694mullidi 11240 . . . . . . . . 9 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
7067, 68, 693eqtr3i 2766 . . . . . . . 8 (i · (-i · (𝐴 ·ih 𝐵))) = (𝐴 ·ih 𝐵)
7163oveq1i 7415 . . . . . . . . 9 ((i · i) · (𝐶 ·ih 𝐷)) = (-1 · (𝐶 ·ih 𝐷))
7231, 31, 9mulassi 11246 . . . . . . . . 9 ((i · i) · (𝐶 ·ih 𝐷)) = (i · (i · (𝐶 ·ih 𝐷)))
739mulm1i 11682 . . . . . . . . 9 (-1 · (𝐶 ·ih 𝐷)) = -(𝐶 ·ih 𝐷)
7471, 72, 733eqtr3i 2766 . . . . . . . 8 (i · (i · (𝐶 ·ih 𝐷))) = -(𝐶 ·ih 𝐷)
7570, 74oveq12i 7417 . . . . . . 7 ((i · (-i · (𝐴 ·ih 𝐵))) + (i · (i · (𝐶 ·ih 𝐷)))) = ((𝐴 ·ih 𝐵) + -(𝐶 ·ih 𝐷))
764, 9negsubi 11561 . . . . . . 7 ((𝐴 ·ih 𝐵) + -(𝐶 ·ih 𝐷)) = ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))
7761, 75, 763eqtri 2762 . . . . . 6 (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))) = ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))
7877oveq2i 7416 . . . . 5 (2 · (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))) = (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))
7955, 60, 783eqtr2i 2764 . . . 4 (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))) = (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))
8030, 79oveq12i 7417 . . 3 ((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) = ((2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) + (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
8112, 21, 803eqtr4i 2768 . 2 (4 · (𝐴 ·ih 𝐵)) = ((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))))
821, 4, 5, 81mvllmuli 12074 1 (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cc 11127  1c1 11130  ici 11131   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  2c2 12295  4c4 12297  ccj 15115  chba 30900   + cva 30901   · csm 30902   ·ih csp 30903   cmv 30906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-hfvadd 30981  ax-hfvmul 30986  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-cj 15118  df-re 15119  df-im 15120  df-hvsub 30952
This theorem is referenced by:  polidi  31139  lnopeq0lem1  31986  lnophmlem2  31998
  Copyright terms: Public domain W3C validator