HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2i Structured version   Visualization version   GIF version

Theorem h1de2i 31489
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2i (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem h1de2i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 h1de2.2 . . . . . . . . 9 𝐵 ∈ ℋ
21, 1hicli 31017 . . . . . . . 8 (𝐵 ·ih 𝐵) ∈ ℂ
3 h1de2.1 . . . . . . . 8 𝐴 ∈ ℋ
42, 3hvmulcli 30950 . . . . . . 7 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 31017 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 30950 . . . . . . 7 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
7 his2sub 31028 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
84, 6, 3, 7mp3an 1463 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
9 ax-his3 31020 . . . . . . . . 9 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
102, 3, 3, 9mp3an 1463 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
113, 3hicli 31017 . . . . . . . . 9 (𝐴 ·ih 𝐴) ∈ ℂ
122, 11mulcomi 11189 . . . . . . . 8 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵))
1310, 12eqtri 2753 . . . . . . 7 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵))
14 ax-his3 31020 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
155, 1, 3, 14mp3an 1463 . . . . . . 7 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
1613, 15oveq12i 7402 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
178, 16eqtr2i 2754 . . . . 5 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴)
18 his2sub 31028 . . . . . . . 8 ((((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
194, 6, 1, 18mp3an 1463 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
202, 5mulcomi 11189 . . . . . . . . 9 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
21 ax-his3 31020 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
222, 3, 1, 21mp3an 1463 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
23 ax-his3 31020 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
245, 1, 1, 23mp3an 1463 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
2520, 22, 243eqtr4i 2763 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)
264, 1hicli 31017 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) ∈ ℂ
276, 1hicli 31017 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) ∈ ℂ
2826, 27subeq0i 11509 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
2925, 28mpbir 231 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = 0
3019, 29eqtri 2753 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0
311h1dei 31486 . . . . . . . . 9 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0)))
323, 31mpbiran 709 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0))
334, 6hvsubcli 30957 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
34 oveq2 7398 . . . . . . . . . . . 12 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (𝐵 ·ih 𝑥) = (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))))
3534eqeq1d 2732 . . . . . . . . . . 11 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
36 oveq2 7398 . . . . . . . . . . . 12 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (𝐴 ·ih 𝑥) = (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))))
3736eqeq1d 2732 . . . . . . . . . . 11 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
3835, 37imbi12d 344 . . . . . . . . . 10 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) ↔ ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)))
3938rspcv 3587 . . . . . . . . 9 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)))
4033, 39ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4132, 40sylbi 217 . . . . . . 7 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
42 orthcom 31044 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4333, 1, 42mp2an 692 . . . . . . 7 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
44 orthcom 31044 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4533, 3, 44mp2an 692 . . . . . . 7 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
4641, 43, 453imtr4g 296 . . . . . 6 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0))
4730, 46mpi 20 . . . . 5 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0)
4817, 47eqtrid 2777 . . . 4 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = 0)
4911, 2mulcli 11188 . . . . 5 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ∈ ℂ
501, 3hicli 31017 . . . . . 6 (𝐵 ·ih 𝐴) ∈ ℂ
515, 50mulcli 11188 . . . . 5 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
5249, 51subeq0i 11509 . . . 4 ((((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = 0 ↔ ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5348, 52sylib 218 . . 3 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5453eqcomd 2736 . 2 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
553, 1bcseqi 31056 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
5654, 55sylib 218 1 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  {csn 4592  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080  cmin 11412  chba 30855   · csm 30857   ·ih csp 30858   cmv 30861  cort 30866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cau 25163  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-hnorm 30904  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188
This theorem is referenced by:  h1de2bi  31490
  Copyright terms: Public domain W3C validator