HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2i Structured version   Visualization version   GIF version

Theorem h1de2i 31501
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2i (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem h1de2i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 h1de2.2 . . . . . . . . 9 𝐵 ∈ ℋ
21, 1hicli 31029 . . . . . . . 8 (𝐵 ·ih 𝐵) ∈ ℂ
3 h1de2.1 . . . . . . . 8 𝐴 ∈ ℋ
42, 3hvmulcli 30962 . . . . . . 7 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 31029 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 30962 . . . . . . 7 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
7 his2sub 31040 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
84, 6, 3, 7mp3an 1462 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
9 ax-his3 31032 . . . . . . . . 9 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
102, 3, 3, 9mp3an 1462 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
113, 3hicli 31029 . . . . . . . . 9 (𝐴 ·ih 𝐴) ∈ ℂ
122, 11mulcomi 11251 . . . . . . . 8 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵))
1310, 12eqtri 2757 . . . . . . 7 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵))
14 ax-his3 31032 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
155, 1, 3, 14mp3an 1462 . . . . . . 7 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
1613, 15oveq12i 7425 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
178, 16eqtr2i 2758 . . . . 5 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴)
18 his2sub 31040 . . . . . . . 8 ((((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
194, 6, 1, 18mp3an 1462 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
202, 5mulcomi 11251 . . . . . . . . 9 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
21 ax-his3 31032 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
222, 3, 1, 21mp3an 1462 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
23 ax-his3 31032 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
245, 1, 1, 23mp3an 1462 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
2520, 22, 243eqtr4i 2767 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)
264, 1hicli 31029 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) ∈ ℂ
276, 1hicli 31029 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) ∈ ℂ
2826, 27subeq0i 11571 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
2925, 28mpbir 231 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = 0
3019, 29eqtri 2757 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0
311h1dei 31498 . . . . . . . . 9 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0)))
323, 31mpbiran 709 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0))
334, 6hvsubcli 30969 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
34 oveq2 7421 . . . . . . . . . . . 12 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (𝐵 ·ih 𝑥) = (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))))
3534eqeq1d 2736 . . . . . . . . . . 11 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
36 oveq2 7421 . . . . . . . . . . . 12 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (𝐴 ·ih 𝑥) = (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))))
3736eqeq1d 2736 . . . . . . . . . . 11 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
3835, 37imbi12d 344 . . . . . . . . . 10 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) ↔ ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)))
3938rspcv 3601 . . . . . . . . 9 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)))
4033, 39ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4132, 40sylbi 217 . . . . . . 7 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
42 orthcom 31056 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4333, 1, 42mp2an 692 . . . . . . 7 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
44 orthcom 31056 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4533, 3, 44mp2an 692 . . . . . . 7 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
4641, 43, 453imtr4g 296 . . . . . 6 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0))
4730, 46mpi 20 . . . . 5 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0)
4817, 47eqtrid 2781 . . . 4 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = 0)
4911, 2mulcli 11250 . . . . 5 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ∈ ℂ
501, 3hicli 31029 . . . . . 6 (𝐵 ·ih 𝐴) ∈ ℂ
515, 50mulcli 11250 . . . . 5 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
5249, 51subeq0i 11571 . . . 4 ((((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = 0 ↔ ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5348, 52sylib 218 . . 3 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5453eqcomd 2740 . 2 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
553, 1bcseqi 31068 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
5654, 55sylib 218 1 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wral 3050  {csn 4606  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137   · cmul 11142  cmin 11474  chba 30867   · csm 30869   ·ih csp 30870   cmv 30873  cort 30878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217  ax-hilex 30947  ax-hfvadd 30948  ax-hvcom 30949  ax-hvass 30950  ax-hv0cl 30951  ax-hvaddid 30952  ax-hfvmul 30953  ax-hvmulid 30954  ax-hvmulass 30955  ax-hvdistr1 30956  ax-hvdistr2 30957  ax-hvmul0 30958  ax-hfi 31027  ax-his1 31030  ax-his2 31031  ax-his3 31032  ax-his4 31033  ax-hcompl 31150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cn 23182  df-cnp 23183  df-lm 23184  df-haus 23270  df-tx 23517  df-hmeo 23710  df-xms 24276  df-ms 24277  df-tms 24278  df-cau 25227  df-grpo 30441  df-gid 30442  df-ginv 30443  df-gdiv 30444  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-vs 30547  df-nmcv 30548  df-ims 30549  df-dip 30649  df-hnorm 30916  df-hvsub 30919  df-hlim 30920  df-hcau 30921  df-sh 31155  df-ch 31169  df-oc 31200
This theorem is referenced by:  h1de2bi  31502
  Copyright terms: Public domain W3C validator