HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2i Structured version   Visualization version   GIF version

Theorem h1de2i 29336
Description: Membership in 1-dimensional subspace. All members are collinear with the generating vector. (Contributed by NM, 17-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2i (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem h1de2i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 h1de2.2 . . . . . . . . 9 𝐵 ∈ ℋ
21, 1hicli 28864 . . . . . . . 8 (𝐵 ·ih 𝐵) ∈ ℂ
3 h1de2.1 . . . . . . . 8 𝐴 ∈ ℋ
42, 3hvmulcli 28797 . . . . . . 7 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 28864 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 28797 . . . . . . 7 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
7 his2sub 28875 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
84, 6, 3, 7mp3an 1458 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
9 ax-his3 28867 . . . . . . . . 9 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
102, 3, 3, 9mp3an 1458 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
113, 3hicli 28864 . . . . . . . . 9 (𝐴 ·ih 𝐴) ∈ ℂ
122, 11mulcomi 10638 . . . . . . . 8 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵))
1310, 12eqtri 2821 . . . . . . 7 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵))
14 ax-his3 28867 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
155, 1, 3, 14mp3an 1458 . . . . . . 7 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
1613, 15oveq12i 7147 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
178, 16eqtr2i 2822 . . . . 5 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴)
18 his2sub 28875 . . . . . . . 8 ((((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
194, 6, 1, 18mp3an 1458 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
202, 5mulcomi 10638 . . . . . . . . 9 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
21 ax-his3 28867 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
222, 3, 1, 21mp3an 1458 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
23 ax-his3 28867 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
245, 1, 1, 23mp3an 1458 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
2520, 22, 243eqtr4i 2831 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)
264, 1hicli 28864 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) ∈ ℂ
276, 1hicli 28864 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) ∈ ℂ
2826, 27subeq0i 10955 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
2925, 28mpbir 234 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) − (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = 0
3019, 29eqtri 2821 . . . . . 6 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0
311h1dei 29333 . . . . . . . . 9 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0)))
323, 31mpbiran 708 . . . . . . . 8 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0))
334, 6hvsubcli 28804 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
34 oveq2 7143 . . . . . . . . . . . 12 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (𝐵 ·ih 𝑥) = (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))))
3534eqeq1d 2800 . . . . . . . . . . 11 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → ((𝐵 ·ih 𝑥) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
36 oveq2 7143 . . . . . . . . . . . 12 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (𝐴 ·ih 𝑥) = (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))))
3736eqeq1d 2800 . . . . . . . . . . 11 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
3835, 37imbi12d 348 . . . . . . . . . 10 (𝑥 = (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) → (((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) ↔ ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)))
3938rspcv 3566 . . . . . . . . 9 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)))
4033, 39ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ ℋ ((𝐵 ·ih 𝑥) = 0 → (𝐴 ·ih 𝑥) = 0) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4132, 40sylbi 220 . . . . . . 7 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 → (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
42 orthcom 28891 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4333, 1, 42mp2an 691 . . . . . . 7 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 ↔ (𝐵 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
44 orthcom 28891 . . . . . . . 8 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0))
4533, 3, 44mp2an 691 . . . . . . 7 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0 ↔ (𝐴 ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
4641, 43, 453imtr4g 299 . . . . . 6 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐵) = 0 → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0))
4730, 46mpi 20 . . . . 5 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih 𝐴) = 0)
4817, 47syl5eq 2845 . . . 4 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = 0)
4911, 2mulcli 10637 . . . . 5 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ∈ ℂ
501, 3hicli 28864 . . . . . 6 (𝐵 ·ih 𝐴) ∈ ℂ
515, 50mulcli 10637 . . . . 5 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
5249, 51subeq0i 10955 . . . 4 ((((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = 0 ↔ ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5348, 52sylib 221 . . 3 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5453eqcomd 2804 . 2 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
553, 1bcseqi 28903 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
5654, 55sylib 221 1 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wral 3106  {csn 4525  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   · cmul 10531  cmin 10859  chba 28702   · csm 28704   ·ih csp 28705   cmv 28708  cort 28713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868  ax-hcompl 28985
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-lm 21834  df-haus 21920  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cau 23860  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-dip 28484  df-hnorm 28751  df-hvsub 28754  df-hlim 28755  df-hcau 28756  df-sh 28990  df-ch 29004  df-oc 29035
This theorem is referenced by:  h1de2bi  29337
  Copyright terms: Public domain W3C validator