Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his35 | Structured version Visualization version GIF version |
Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his35 | ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | his5 28969 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ·ih (𝐵 ·ℎ 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷))) | |
2 | 1 | 3expb 1118 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih (𝐵 ·ℎ 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷))) |
3 | 2 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih (𝐵 ·ℎ 𝐷)) = ((∗‘𝐵) · (𝐶 ·ih 𝐷))) |
4 | 3 | oveq2d 7167 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 · (𝐶 ·ih (𝐵 ·ℎ 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 ·ih 𝐷)))) |
5 | simpll 767 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐴 ∈ ℂ) | |
6 | simprl 771 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → 𝐶 ∈ ℋ) | |
7 | hvmulcl 28896 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℋ) → (𝐵 ·ℎ 𝐷) ∈ ℋ) | |
8 | 7 | ad2ant2l 746 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐵 ·ℎ 𝐷) ∈ ℋ) |
9 | ax-his3 28967 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ (𝐵 ·ℎ 𝐷) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = (𝐴 · (𝐶 ·ih (𝐵 ·ℎ 𝐷)))) | |
10 | 5, 6, 8, 9 | syl3anc 1369 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = (𝐴 · (𝐶 ·ih (𝐵 ·ℎ 𝐷)))) |
11 | cjcl 14513 | . . . 4 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
12 | 11 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (∗‘𝐵) ∈ ℂ) |
13 | hicl 28963 | . . . 4 ⊢ ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ·ih 𝐷) ∈ ℂ) | |
14 | 13 | adantl 486 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ·ih 𝐷) ∈ ℂ) |
15 | 5, 12, 14 | mulassd 10703 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 ·ih 𝐷)))) |
16 | 4, 10, 15 | 3eqtr4d 2804 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ·ℎ 𝐶) ·ih (𝐵 ·ℎ 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 ·ih 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 ℂcc 10574 · cmul 10581 ∗ccj 14504 ℋchba 28802 ·ℎ csm 28804 ·ih csp 28805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-hfvmul 28888 ax-hfi 28962 ax-his1 28965 ax-his3 28967 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-2 11738 df-cj 14507 df-re 14508 df-im 14509 |
This theorem is referenced by: his35i 28972 pjhthlem1 29274 |
Copyright terms: Public domain | W3C validator |