HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass2 Structured version   Visualization version   GIF version

Theorem kbass2 32108
Description: Dirac bra-ket associative law (⟨𝐴𝐵⟩)⟨𝐶 ∣ = ⟨𝐴 ∣ ( ∣ 𝐵⟩⟨𝐶 ∣ ), i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))

Proof of Theorem kbass2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7388 . . . 4 (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) ∈ V
2 eqid 2733 . . . 4 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
31, 2fnmpti 6632 . . 3 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ
4 bracl 31940 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
5 brafn 31938 . . . . . 6 (𝐶 ∈ ℋ → (bra‘𝐶): ℋ⟶ℂ)
6 hfmmval 31730 . . . . . 6 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
74, 5, 6syl2an 596 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
873impa 1109 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
98fneq1d 6582 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ ↔ (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ))
103, 9mpbiri 258 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ)
11 brafn 31938 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
12 kbop 31944 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
13 fco 6683 . . . . 5 (((bra‘𝐴): ℋ⟶ℂ ∧ (𝐵 ketbra 𝐶): ℋ⟶ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1411, 12, 13syl2an 596 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
15143impb 1114 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1615ffnd 6660 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)) Fn ℋ)
17 simpl1 1192 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
18 simpl2 1193 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
19 braval 31935 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
2017, 18, 19syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
21 simpl3 1194 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
22 simpr 484 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
23 braval 31935 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2421, 22, 23syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2520, 24oveq12d 7373 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
26 hicl 31071 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2718, 17, 26syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2820, 27eqeltrd 2833 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
2921, 5syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (bra‘𝐶): ℋ⟶ℂ)
30 hfmval 31735 . . . 4 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
3128, 29, 22, 30syl3anc 1373 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
32 hicl 31071 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
3322, 21, 32syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
34 ax-his3 31075 . . . . 5 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
3533, 18, 17, 34syl3anc 1373 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
36123adant1 1130 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
37 fvco3 6930 . . . . . 6 (((𝐵 ketbra 𝐶): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
3836, 37sylan 580 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
39 kbval 31945 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4018, 21, 22, 39syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4140fveq2d 6835 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)) = ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)))
42 hvmulcl 31004 . . . . . . 7 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
4333, 18, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
44 braval 31935 . . . . . 6 ((𝐴 ∈ ℋ ∧ ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4517, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4638, 41, 453eqtrd 2772 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4727, 33mulcomd 11143 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
4835, 46, 473eqtr4d 2778 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
4925, 31, 483eqtr4d 2778 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥))
5010, 16, 49eqfnfvd 6976 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cmpt 5176  ccom 5625   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cc 11014   · cmul 11021  chba 30910   · csm 30912   ·ih csp 30913   ·fn chft 30933  bracbr 30947   ketbra ck 30948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-mulcom 11080  ax-hilex 30990  ax-hfvmul 30996  ax-hfi 31070  ax-his3 31075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-hfmul 31725  df-bra 31841  df-kb 31842
This theorem is referenced by:  kbass6  32112
  Copyright terms: Public domain W3C validator