HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass2 Structured version   Visualization version   GIF version

Theorem kbass2 32136
Description: Dirac bra-ket associative law (⟨𝐴𝐵⟩)⟨𝐶 ∣ = ⟨𝐴 ∣ ( ∣ 𝐵⟩⟨𝐶 ∣ ), i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))

Proof of Theorem kbass2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . . 4 (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) ∈ V
2 eqid 2737 . . . 4 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
31, 2fnmpti 6711 . . 3 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ
4 bracl 31968 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
5 brafn 31966 . . . . . 6 (𝐶 ∈ ℋ → (bra‘𝐶): ℋ⟶ℂ)
6 hfmmval 31758 . . . . . 6 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
74, 5, 6syl2an 596 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
873impa 1110 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
98fneq1d 6661 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ ↔ (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ))
103, 9mpbiri 258 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ)
11 brafn 31966 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
12 kbop 31972 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
13 fco 6760 . . . . 5 (((bra‘𝐴): ℋ⟶ℂ ∧ (𝐵 ketbra 𝐶): ℋ⟶ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1411, 12, 13syl2an 596 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
15143impb 1115 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1615ffnd 6737 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)) Fn ℋ)
17 simpl1 1192 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
18 simpl2 1193 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
19 braval 31963 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
2017, 18, 19syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
21 simpl3 1194 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
22 simpr 484 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
23 braval 31963 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2421, 22, 23syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2520, 24oveq12d 7449 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
26 hicl 31099 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2718, 17, 26syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2820, 27eqeltrd 2841 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
2921, 5syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (bra‘𝐶): ℋ⟶ℂ)
30 hfmval 31763 . . . 4 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
3128, 29, 22, 30syl3anc 1373 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
32 hicl 31099 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
3322, 21, 32syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
34 ax-his3 31103 . . . . 5 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
3533, 18, 17, 34syl3anc 1373 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
36123adant1 1131 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
37 fvco3 7008 . . . . . 6 (((𝐵 ketbra 𝐶): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
3836, 37sylan 580 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
39 kbval 31973 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4018, 21, 22, 39syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4140fveq2d 6910 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)) = ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)))
42 hvmulcl 31032 . . . . . . 7 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
4333, 18, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
44 braval 31963 . . . . . 6 ((𝐴 ∈ ℋ ∧ ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4517, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4638, 41, 453eqtrd 2781 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4727, 33mulcomd 11282 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
4835, 46, 473eqtr4d 2787 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
4925, 31, 483eqtr4d 2787 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥))
5010, 16, 49eqfnfvd 7054 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cmpt 5225  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153   · cmul 11160  chba 30938   · csm 30940   ·ih csp 30941   ·fn chft 30961  bracbr 30975   ketbra ck 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-mulcom 11219  ax-hilex 31018  ax-hfvmul 31024  ax-hfi 31098  ax-his3 31103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-hfmul 31753  df-bra 31869  df-kb 31870
This theorem is referenced by:  kbass6  32140
  Copyright terms: Public domain W3C validator