HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass2 Structured version   Visualization version   GIF version

Theorem kbass2 32146
Description: Dirac bra-ket associative law (⟨𝐴𝐵⟩)⟨𝐶 ∣ = ⟨𝐴 ∣ ( ∣ 𝐵⟩⟨𝐶 ∣ ), i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))

Proof of Theorem kbass2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . . 4 (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) ∈ V
2 eqid 2735 . . . 4 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
31, 2fnmpti 6712 . . 3 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ
4 bracl 31978 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
5 brafn 31976 . . . . . 6 (𝐶 ∈ ℋ → (bra‘𝐶): ℋ⟶ℂ)
6 hfmmval 31768 . . . . . 6 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
74, 5, 6syl2an 596 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
873impa 1109 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
98fneq1d 6662 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ ↔ (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ))
103, 9mpbiri 258 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ)
11 brafn 31976 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
12 kbop 31982 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
13 fco 6761 . . . . 5 (((bra‘𝐴): ℋ⟶ℂ ∧ (𝐵 ketbra 𝐶): ℋ⟶ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1411, 12, 13syl2an 596 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
15143impb 1114 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1615ffnd 6738 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)) Fn ℋ)
17 simpl1 1190 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
18 simpl2 1191 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
19 braval 31973 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
2017, 18, 19syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
21 simpl3 1192 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
22 simpr 484 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
23 braval 31973 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2421, 22, 23syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2520, 24oveq12d 7449 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
26 hicl 31109 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2718, 17, 26syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2820, 27eqeltrd 2839 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
2921, 5syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (bra‘𝐶): ℋ⟶ℂ)
30 hfmval 31773 . . . 4 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
3128, 29, 22, 30syl3anc 1370 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
32 hicl 31109 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
3322, 21, 32syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
34 ax-his3 31113 . . . . 5 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
3533, 18, 17, 34syl3anc 1370 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
36123adant1 1129 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
37 fvco3 7008 . . . . . 6 (((𝐵 ketbra 𝐶): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
3836, 37sylan 580 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
39 kbval 31983 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4018, 21, 22, 39syl3anc 1370 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4140fveq2d 6911 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)) = ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)))
42 hvmulcl 31042 . . . . . . 7 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
4333, 18, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
44 braval 31973 . . . . . 6 ((𝐴 ∈ ℋ ∧ ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4517, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4638, 41, 453eqtrd 2779 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4727, 33mulcomd 11280 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
4835, 46, 473eqtr4d 2785 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
4925, 31, 483eqtr4d 2785 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥))
5010, 16, 49eqfnfvd 7054 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cmpt 5231  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cc 11151   · cmul 11158  chba 30948   · csm 30950   ·ih csp 30951   ·fn chft 30971  bracbr 30985   ketbra ck 30986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-mulcom 11217  ax-hilex 31028  ax-hfvmul 31034  ax-hfi 31108  ax-his3 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-hfmul 31763  df-bra 31879  df-kb 31880
This theorem is referenced by:  kbass6  32150
  Copyright terms: Public domain W3C validator