HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass2 Structured version   Visualization version   GIF version

Theorem kbass2 31233
Description: Dirac bra-ket associative law (⟨𝐴𝐵⟩)⟨𝐶 ∣ = ⟨𝐴 ∣ ( ∣ 𝐵⟩⟨𝐶 ∣ ), i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))

Proof of Theorem kbass2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7426 . . . 4 (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) ∈ V
2 eqid 2731 . . . 4 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
31, 2fnmpti 6680 . . 3 (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ
4 bracl 31065 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
5 brafn 31063 . . . . . 6 (𝐶 ∈ ℋ → (bra‘𝐶): ℋ⟶ℂ)
6 hfmmval 30855 . . . . . 6 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
74, 5, 6syl2an 596 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
873impa 1110 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))))
98fneq1d 6631 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ ↔ (𝑥 ∈ ℋ ↦ (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥))) Fn ℋ))
103, 9mpbiri 257 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) Fn ℋ)
11 brafn 31063 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
12 kbop 31069 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
13 fco 6728 . . . . 5 (((bra‘𝐴): ℋ⟶ℂ ∧ (𝐵 ketbra 𝐶): ℋ⟶ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1411, 12, 13syl2an 596 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
15143impb 1115 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)): ℋ⟶ℂ)
1615ffnd 6705 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)) Fn ℋ)
17 simpl1 1191 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
18 simpl2 1192 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
19 braval 31060 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
2017, 18, 19syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
21 simpl3 1193 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
22 simpr 485 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
23 braval 31060 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2421, 22, 23syl2anc 584 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐶)‘𝑥) = (𝑥 ·ih 𝐶))
2520, 24oveq12d 7411 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
26 hicl 30196 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2718, 17, 26syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
2820, 27eqeltrd 2832 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ)
2921, 5syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (bra‘𝐶): ℋ⟶ℂ)
30 hfmval 30860 . . . 4 ((((bra‘𝐴)‘𝐵) ∈ ℂ ∧ (bra‘𝐶): ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
3128, 29, 22, 30syl3anc 1371 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴)‘𝐵) · ((bra‘𝐶)‘𝑥)))
32 hicl 30196 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
3322, 21, 32syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐶) ∈ ℂ)
34 ax-his3 30200 . . . . 5 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
3533, 18, 17, 34syl3anc 1371 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
36123adant1 1130 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ketbra 𝐶): ℋ⟶ ℋ)
37 fvco3 6976 . . . . . 6 (((𝐵 ketbra 𝐶): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
3836, 37sylan 580 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)))
39 kbval 31070 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4018, 21, 22, 39syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ketbra 𝐶)‘𝑥) = ((𝑥 ·ih 𝐶) · 𝐵))
4140fveq2d 6882 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝐵 ketbra 𝐶)‘𝑥)) = ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)))
42 hvmulcl 30129 . . . . . . 7 (((𝑥 ·ih 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
4333, 18, 42syl2anc 584 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ)
44 braval 31060 . . . . . 6 ((𝐴 ∈ ℋ ∧ ((𝑥 ·ih 𝐶) · 𝐵) ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4517, 43, 44syl2anc 584 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐴)‘((𝑥 ·ih 𝐶) · 𝐵)) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4638, 41, 453eqtrd 2775 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = (((𝑥 ·ih 𝐶) · 𝐵) ·ih 𝐴))
4727, 33mulcomd 11217 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)) = ((𝑥 ·ih 𝐶) · (𝐵 ·ih 𝐴)))
4835, 46, 473eqtr4d 2781 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥) = ((𝐵 ·ih 𝐴) · (𝑥 ·ih 𝐶)))
4925, 31, 483eqtr4d 2781 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶))‘𝑥) = (((bra‘𝐴) ∘ (𝐵 ketbra 𝐶))‘𝑥))
5010, 16, 49eqfnfvd 7021 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐴)‘𝐵) ·fn (bra‘𝐶)) = ((bra‘𝐴) ∘ (𝐵 ketbra 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cmpt 5224  ccom 5673   Fn wfn 6527  wf 6528  cfv 6532  (class class class)co 7393  cc 11090   · cmul 11097  chba 30035   · csm 30037   ·ih csp 30038   ·fn chft 30058  bracbr 30072   ketbra ck 30073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-mulcom 11156  ax-hilex 30115  ax-hfvmul 30121  ax-hfi 30195  ax-his3 30200
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-map 8805  df-hfmul 30850  df-bra 30966  df-kb 30967
This theorem is referenced by:  kbass6  31237
  Copyright terms: Public domain W3C validator