HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Structured version   Visualization version   GIF version

Theorem adjmul 32021
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmul ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))

Proof of Theorem adjmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 31817 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2 homulcl 31688 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
31, 2sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
4 cjcl 15071 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 dmadjrn 31824 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
6 dmadjop 31817 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
8 homulcl 31688 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
94, 7, 8syl2an 596 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
10 adj2 31863 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
11103expb 1120 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1211adantll 714 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1312oveq2d 7403 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝐴 · ((𝑇𝑥) ·ih 𝑦)) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
141ffvelcdmda 7056 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-his3 31013 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
1614, 15syl3an2 1164 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
17163exp 1119 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))))
1817expd 415 . . . . . 6 (𝐴 ∈ ℂ → (𝑇 ∈ dom adj → (𝑥 ∈ ℋ → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦))))))
1918imp43 427 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
20 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
21 simprl 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
22 adjcl 31861 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
2322ad2ant2l 746 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
24 his52 31016 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2520, 21, 23, 24syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2613, 19, 253eqtr4d 2774 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
27 homval 31670 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
281, 27syl3an2 1164 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
29283expa 1118 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3029adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3130oveq1d 7402 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
32 id 22 . . . . . . . 8 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
33 homval 31670 . . . . . . . 8 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
344, 7, 32, 33syl3an 1160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
35343expa 1118 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3635adantrl 716 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3736oveq2d 7403 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
3826, 31, 373eqtr4d 2774 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
3938ralrimivva 3180 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
40 adjeq 31864 . 2 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦))) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
413, 9, 39, 40syl3anc 1373 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cc 11066   · cmul 11073  ccj 15062  chba 30848   · csm 30850   ·ih csp 30851   ·op chot 30868  adjcado 30884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-cj 15065  df-re 15066  df-im 15067  df-hvsub 30900  df-homul 31660  df-adjh 31778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator