HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Structured version   Visualization version   GIF version

Theorem adjmul 30355
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmul ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))

Proof of Theorem adjmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 30151 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2 homulcl 30022 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
31, 2sylan2 592 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
4 cjcl 14744 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 dmadjrn 30158 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
6 dmadjop 30151 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
8 homulcl 30022 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
94, 7, 8syl2an 595 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
10 adj2 30197 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
11103expb 1118 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1211adantll 710 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1312oveq2d 7271 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝐴 · ((𝑇𝑥) ·ih 𝑦)) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
141ffvelrnda 6943 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-his3 29347 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
1614, 15syl3an2 1162 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
17163exp 1117 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))))
1817expd 415 . . . . . 6 (𝐴 ∈ ℂ → (𝑇 ∈ dom adj → (𝑥 ∈ ℋ → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦))))))
1918imp43 427 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
20 simpll 763 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
21 simprl 767 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
22 adjcl 30195 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
2322ad2ant2l 742 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
24 his52 29350 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2520, 21, 23, 24syl3anc 1369 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2613, 19, 253eqtr4d 2788 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
27 homval 30004 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
281, 27syl3an2 1162 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
29283expa 1116 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3029adantrr 713 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3130oveq1d 7270 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
32 id 22 . . . . . . . 8 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
33 homval 30004 . . . . . . . 8 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
344, 7, 32, 33syl3an 1158 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
35343expa 1116 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3635adantrl 712 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3736oveq2d 7271 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
3826, 31, 373eqtr4d 2788 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
3938ralrimivva 3114 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
40 adjeq 30198 . 2 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦))) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
413, 9, 39, 40syl3anc 1369 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cc 10800   · cmul 10807  ccj 14735  chba 29182   · csm 29184   ·ih csp 29185   ·op chot 29202  adjcado 29218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-hvsub 29234  df-homul 29994  df-adjh 30112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator