HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Structured version   Visualization version   GIF version

Theorem adjmul 29285
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmul ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))

Proof of Theorem adjmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 29081 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2 homulcl 28952 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
31, 2sylan2 582 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
4 cjcl 14071 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 dmadjrn 29088 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
6 dmadjop 29081 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
8 homulcl 28952 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
94, 7, 8syl2an 585 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
10 adj2 29127 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
11103expb 1142 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1211adantll 696 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1312oveq2d 6893 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝐴 · ((𝑇𝑥) ·ih 𝑦)) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
141ffvelrnda 6584 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-his3 28275 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
1614, 15syl3an2 1196 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
17163exp 1141 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))))
1817expd 402 . . . . . 6 (𝐴 ∈ ℂ → (𝑇 ∈ dom adj → (𝑥 ∈ ℋ → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦))))))
1918imp43 416 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
20 simpll 774 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
21 simprl 778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
22 adjcl 29125 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
2322ad2ant2l 743 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
24 his52 28278 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2520, 21, 23, 24syl3anc 1483 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2613, 19, 253eqtr4d 2857 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
27 homval 28934 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
281, 27syl3an2 1196 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
29283expa 1140 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3029adantrr 699 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3130oveq1d 6892 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
32 id 22 . . . . . . . 8 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
33 homval 28934 . . . . . . . 8 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
344, 7, 32, 33syl3an 1192 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
35343expa 1140 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3635adantrl 698 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3736oveq2d 6893 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
3826, 31, 373eqtr4d 2857 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
3938ralrimivva 3166 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
40 adjeq 29128 . 2 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦))) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
413, 9, 39, 40syl3anc 1483 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wral 3103  dom cdm 5318  wf 6100  cfv 6104  (class class class)co 6877  cc 10222   · cmul 10229  ccj 14062  chil 28110   · csm 28112   ·ih csp 28113   ·op chot 28130  adjcado 28146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-hilex 28190  ax-hfvadd 28191  ax-hvcom 28192  ax-hvass 28193  ax-hv0cl 28194  ax-hvaddid 28195  ax-hfvmul 28196  ax-hvmulid 28197  ax-hvdistr2 28200  ax-hvmul0 28201  ax-hfi 28270  ax-his1 28273  ax-his2 28274  ax-his3 28275  ax-his4 28276
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-po 5239  df-so 5240  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-2 11367  df-cj 14065  df-re 14066  df-im 14067  df-hvsub 28162  df-homul 28924  df-adjh 29042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator