HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Structured version   Visualization version   GIF version

Theorem adjmul 32074
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmul ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))

Proof of Theorem adjmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 31870 . . 3 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2 homulcl 31741 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
31, 2sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
4 cjcl 15014 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 dmadjrn 31877 . . . 4 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
6 dmadjop 31870 . . . 4 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
75, 6syl 17 . . 3 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
8 homulcl 31741 . . 3 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
94, 7, 8syl2an 596 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ)
10 adj2 31916 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
11103expb 1120 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1211adantll 714 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih ((adj𝑇)‘𝑦)))
1312oveq2d 7368 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝐴 · ((𝑇𝑥) ·ih 𝑦)) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
141ffvelcdmda 7023 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
15 ax-his3 31066 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
1614, 15syl3an2 1164 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
17163exp 1119 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑇 ∈ dom adj𝑥 ∈ ℋ) → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))))
1817expd 415 . . . . . 6 (𝐴 ∈ ℂ → (𝑇 ∈ dom adj → (𝑥 ∈ ℋ → (𝑦 ∈ ℋ → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦))))))
1918imp43 427 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
20 simpll 766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
21 simprl 770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
22 adjcl 31914 . . . . . . 7 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
2322ad2ant2l 746 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
24 his52 31069 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2520, 21, 23, 24syl3anc 1373 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))) = (𝐴 · (𝑥 ·ih ((adj𝑇)‘𝑦))))
2613, 19, 253eqtr4d 2778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
27 homval 31723 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
281, 27syl3an2 1164 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
29283expa 1118 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3029adantrr 717 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
3130oveq1d 7367 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
32 id 22 . . . . . . . 8 (𝑦 ∈ ℋ → 𝑦 ∈ ℋ)
33 homval 31723 . . . . . . . 8 (((∗‘𝐴) ∈ ℂ ∧ (adj𝑇): ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
344, 7, 32, 33syl3an 1160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
35343expa 1118 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ 𝑦 ∈ ℋ) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3635adantrl 716 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((∗‘𝐴) ·op (adj𝑇))‘𝑦) = ((∗‘𝐴) · ((adj𝑇)‘𝑦)))
3736oveq2d 7368 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)) = (𝑥 ·ih ((∗‘𝐴) · ((adj𝑇)‘𝑦))))
3826, 31, 373eqtr4d 2778 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
3938ralrimivva 3176 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦)))
40 adjeq 31917 . 2 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ((∗‘𝐴) ·op (adj𝑇)): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝑥 ·ih (((∗‘𝐴) ·op (adj𝑇))‘𝑦))) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
413, 9, 39, 40syl3anc 1373 1 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ dom adj) → (adj‘(𝐴 ·op 𝑇)) = ((∗‘𝐴) ·op (adj𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  dom cdm 5619  wf 6482  cfv 6486  (class class class)co 7352  cc 11011   · cmul 11018  ccj 15005  chba 30901   · csm 30903   ·ih csp 30904   ·op chot 30921  adjcado 30937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-hilex 30981  ax-hfvadd 30982  ax-hvcom 30983  ax-hvass 30984  ax-hv0cl 30985  ax-hvaddid 30986  ax-hfvmul 30987  ax-hvmulid 30988  ax-hvdistr2 30991  ax-hvmul0 30992  ax-hfi 31061  ax-his1 31064  ax-his2 31065  ax-his3 31066  ax-his4 31067
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010  df-hvsub 30953  df-homul 31713  df-adjh 31831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator