HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopm Structured version   Visualization version   GIF version

Theorem hmopm 29336
Description: The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopm ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)

Proof of Theorem hmopm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recn 10279 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 hmopf 29189 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
3 homulcl 29074 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
41, 2, 3syl2an 589 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
5 cjre 14164 . . . . . 6 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
6 hmop 29237 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
763expb 1149 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
85, 7oveqan12d 6861 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
98anassrs 459 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
101, 2anim12i 606 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
11 homval 29056 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
12113expa 1147 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
1312adantrl 707 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
1413oveq2d 6858 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 ·ih (𝐴 · (𝑇𝑦))))
15 simpll 783 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
16 simprl 787 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelrn 6547 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2l 752 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 his5 28399 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝐴 · (𝑇𝑦))) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2015, 16, 18, 19syl3anc 1490 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝐴 · (𝑇𝑦))) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2114, 20eqtrd 2799 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2210, 21sylan 575 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
23 homval 29056 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
24233expa 1147 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
2524adantrr 708 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
2625oveq1d 6857 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
27 ffvelrn 6547 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2827ad2ant2lr 754 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
29 simprr 789 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
30 ax-his3 28397 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3115, 28, 29, 30syl3anc 1490 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3226, 31eqtrd 2799 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3310, 32sylan 575 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
349, 22, 333eqtr4d 2809 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦))
3534ralrimivva 3118 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦))
36 elhmop 29188 . 2 ((𝐴 ·op 𝑇) ∈ HrmOp ↔ ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦)))
374, 35, 36sylanbrc 578 1 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188   · cmul 10194  ccj 14121  chba 28232   · csm 28234   ·ih csp 28235   ·op chot 28252  HrmOpcho 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-hilex 28312  ax-hfvmul 28318  ax-hfi 28392  ax-his1 28395  ax-his3 28397
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-2 11335  df-cj 14124  df-re 14125  df-im 14126  df-homul 29046  df-hmop 29159
This theorem is referenced by:  hmopd  29337  leopmuli  29448  leopmul  29449  leopmul2i  29450  leopnmid  29453  nmopleid  29454  opsqrlem1  29455  opsqrlem4  29458
  Copyright terms: Public domain W3C validator