HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopm Structured version   Visualization version   GIF version

Theorem hmopm 30102
Description: The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopm ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)

Proof of Theorem hmopm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recn 10819 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 hmopf 29955 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
3 homulcl 29840 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
41, 2, 3syl2an 599 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
5 cjre 14702 . . . . . 6 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
6 hmop 30003 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
763expb 1122 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
85, 7oveqan12d 7232 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
98anassrs 471 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
101, 2anim12i 616 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
11 homval 29822 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
12113expa 1120 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
1312adantrl 716 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
1413oveq2d 7229 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 ·ih (𝐴 · (𝑇𝑦))))
15 simpll 767 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
16 simprl 771 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelrn 6902 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2l 746 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 his5 29167 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝐴 · (𝑇𝑦))) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2015, 16, 18, 19syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝐴 · (𝑇𝑦))) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2114, 20eqtrd 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2210, 21sylan 583 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
23 homval 29822 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
24233expa 1120 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
2524adantrr 717 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
2625oveq1d 7228 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
27 ffvelrn 6902 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2827ad2ant2lr 748 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
29 simprr 773 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
30 ax-his3 29165 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3115, 28, 29, 30syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3226, 31eqtrd 2777 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3310, 32sylan 583 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
349, 22, 333eqtr4d 2787 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦))
3534ralrimivva 3112 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦))
36 elhmop 29954 . 2 ((𝐴 ·op 𝑇) ∈ HrmOp ↔ ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦)))
374, 35, 36sylanbrc 586 1 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728   · cmul 10734  ccj 14659  chba 29000   · csm 29002   ·ih csp 29003   ·op chot 29020  HrmOpcho 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-hilex 29080  ax-hfvmul 29086  ax-hfi 29160  ax-his1 29163  ax-his3 29165
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-2 11893  df-cj 14662  df-re 14663  df-im 14664  df-homul 29812  df-hmop 29925
This theorem is referenced by:  hmopd  30103  leopmuli  30214  leopmul  30215  leopmul2i  30216  leopnmid  30219  nmopleid  30220  opsqrlem1  30221  opsqrlem4  30224
  Copyright terms: Public domain W3C validator