HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopm Structured version   Visualization version   GIF version

Theorem hmopm 31707
Description: The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopm ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)

Proof of Theorem hmopm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recn 11206 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 hmopf 31560 . . 3 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
3 homulcl 31445 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
5 cjre 15093 . . . . . 6 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
6 hmop 31608 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
763expb 1119 . . . . . 6 ((𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
85, 7oveqan12d 7431 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑇 ∈ HrmOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
98anassrs 467 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
101, 2anim12i 612 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ))
11 homval 31427 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
12113expa 1117 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
1312adantrl 713 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
1413oveq2d 7428 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 ·ih (𝐴 · (𝑇𝑦))))
15 simpll 764 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝐴 ∈ ℂ)
16 simprl 768 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
17 ffvelcdm 7083 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1817ad2ant2l 743 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑦) ∈ ℋ)
19 his5 30772 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝐴 · (𝑇𝑦))) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2015, 16, 18, 19syl3anc 1370 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝐴 · (𝑇𝑦))) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2114, 20eqtrd 2771 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
2210, 21sylan 579 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = ((∗‘𝐴) · (𝑥 ·ih (𝑇𝑦))))
23 homval 31427 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
24233expa 1117 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
2524adantrr 714 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
2625oveq1d 7427 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = ((𝐴 · (𝑇𝑥)) ·ih 𝑦))
27 ffvelcdm 7083 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
2827ad2ant2lr 745 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
29 simprr 770 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
30 ax-his3 30770 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3115, 28, 29, 30syl3anc 1370 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝐴 · (𝑇𝑥)) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3226, 31eqtrd 2771 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
3310, 32sylan 579 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦) = (𝐴 · ((𝑇𝑥) ·ih 𝑦)))
349, 22, 333eqtr4d 2781 . . 3 (((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦))
3534ralrimivva 3199 . 2 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦))
36 elhmop 31559 . 2 ((𝐴 ·op 𝑇) ∈ HrmOp ↔ ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝐴 ·op 𝑇)‘𝑦)) = (((𝐴 ·op 𝑇)‘𝑥) ·ih 𝑦)))
374, 35, 36sylanbrc 582 1 ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cr 11115   · cmul 11121  ccj 15050  chba 30605   · csm 30607   ·ih csp 30608   ·op chot 30625  HrmOpcho 30636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-hilex 30685  ax-hfvmul 30691  ax-hfi 30765  ax-his1 30768  ax-his3 30770
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-2 12282  df-cj 15053  df-re 15054  df-im 15055  df-homul 31417  df-hmop 31530
This theorem is referenced by:  hmopd  31708  leopmuli  31819  leopmul  31820  leopmul2i  31821  leopnmid  31824  nmopleid  31825  opsqrlem1  31826  opsqrlem4  31829
  Copyright terms: Public domain W3C validator