Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Structured version   Visualization version   GIF version

Theorem riesz3i 29855
 Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
riesz3i 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Distinct variable group:   𝑤,𝑣,𝑇

Proof of Theorem riesz3i
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 28796 . . 3 0 ∈ ℋ
2 nlelch.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfnfi 29834 . . . . . 6 𝑇: ℋ⟶ℂ
4 fveq2 6646 . . . . . . . . 9 ((⊥‘(null‘𝑇)) = 0 → (⊥‘(⊥‘(null‘𝑇))) = (⊥‘0))
5 nlelch.2 . . . . . . . . . . 11 𝑇 ∈ ContFn
62, 5nlelchi 29854 . . . . . . . . . 10 (null‘𝑇) ∈ C
76ococi 29198 . . . . . . . . 9 (⊥‘(⊥‘(null‘𝑇))) = (null‘𝑇)
8 choc0 29119 . . . . . . . . 9 (⊥‘0) = ℋ
94, 7, 83eqtr3g 2856 . . . . . . . 8 ((⊥‘(null‘𝑇)) = 0 → (null‘𝑇) = ℋ)
109eleq2d 2875 . . . . . . 7 ((⊥‘(null‘𝑇)) = 0 → (𝑣 ∈ (null‘𝑇) ↔ 𝑣 ∈ ℋ))
1110biimpar 481 . . . . . 6 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → 𝑣 ∈ (null‘𝑇))
12 elnlfn2 29722 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ 𝑣 ∈ (null‘𝑇)) → (𝑇𝑣) = 0)
133, 11, 12sylancr 590 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = 0)
14 hi02 28890 . . . . . 6 (𝑣 ∈ ℋ → (𝑣 ·ih 0) = 0)
1514adantl 485 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑣 ·ih 0) = 0)
1613, 15eqtr4d 2836 . . . 4 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih 0))
1716ralrimiva 3149 . . 3 ((⊥‘(null‘𝑇)) = 0 → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0))
18 oveq2 7144 . . . . . 6 (𝑤 = 0 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 0))
1918eqeq2d 2809 . . . . 5 (𝑤 = 0 → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih 0)))
2019ralbidv 3162 . . . 4 (𝑤 = 0 → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)))
2120rspcev 3571 . . 3 ((0 ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
221, 17, 21sylancr 590 . 2 ((⊥‘(null‘𝑇)) = 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
236choccli 29100 . . . 4 (⊥‘(null‘𝑇)) ∈ C
2423chne0i 29246 . . 3 ((⊥‘(null‘𝑇)) ≠ 0 ↔ ∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0)
2523cheli 29025 . . . . 5 (𝑢 ∈ (⊥‘(null‘𝑇)) → 𝑢 ∈ ℋ)
263ffvelrni 6828 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑇𝑢) ∈ ℂ)
2726adantr 484 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑇𝑢) ∈ ℂ)
28 hicl 28873 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑢 ·ih 𝑢) ∈ ℂ)
2928anidms 570 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑢 ·ih 𝑢) ∈ ℂ)
3029adantr 484 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ∈ ℂ)
31 his6 28892 . . . . . . . . . . . . 13 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) = 0 ↔ 𝑢 = 0))
3231necon3bid 3031 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) ≠ 0 ↔ 𝑢 ≠ 0))
3332biimpar 481 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ≠ 0)
3427, 30, 33divcld 11408 . . . . . . . . . 10 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
3534cjcld 14550 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ)
36 simpl 486 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → 𝑢 ∈ ℋ)
37 hvmulcl 28806 . . . . . . . . 9 (((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3835, 36, 37syl2anc 587 . . . . . . . 8 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3938adantll 713 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
40 hvmulcl 28806 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
4126, 40sylan 583 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
423ffvelrni 6828 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ℋ → (𝑇𝑣) ∈ ℂ)
43 hvmulcl 28806 . . . . . . . . . . . . . . . . . 18 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4442, 43sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4544ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
46 simpl 486 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
47 his2sub 28885 . . . . . . . . . . . . . . . 16 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4841, 45, 46, 47syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4926adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
50 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
51 ax-his3 28877 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5249, 50, 46, 51syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5342adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
54 ax-his3 28877 . . . . . . . . . . . . . . . . 17 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5553, 46, 46, 54syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5652, 55oveq12d 7154 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)) = (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
5748, 56eqtr2d 2834 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
5857adantll 713 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
59 hvsubcl 28810 . . . . . . . . . . . . . . . . . 18 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
6041, 45, 59syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
612lnfnsubi 29839 . . . . . . . . . . . . . . . . . . 19 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
6241, 45, 61syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
632lnfnmuli 29837 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
6426, 63sylan 583 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
652lnfnmuli 29837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑣) · (𝑇𝑢)))
66 mulcom 10615 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇𝑣) ∈ ℂ ∧ (𝑇𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6726, 66sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6865, 67eqtrd 2833 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6942, 68sylan 583 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7069ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7164, 70oveq12d 7154 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))) = (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))))
72 mulcl 10613 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7326, 42, 72syl2an 598 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7473subidd 10977 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))) = 0)
7562, 71, 743eqtrd 2837 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)
76 elnlfn 29721 . . . . . . . . . . . . . . . . . 18 (𝑇: ℋ⟶ℂ → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)))
773, 76ax-mp 5 . . . . . . . . . . . . . . . . 17 ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0))
7860, 75, 77sylanbrc 586 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇))
796chssii 29024 . . . . . . . . . . . . . . . . 17 (null‘𝑇) ⊆ ℋ
80 ocorth 29084 . . . . . . . . . . . . . . . . 17 ((null‘𝑇) ⊆ ℋ → (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0))
8179, 80ax-mp 5 . . . . . . . . . . . . . . . 16 (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8278, 81sylan 583 . . . . . . . . . . . . . . 15 (((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8382ancoms 462 . . . . . . . . . . . . . 14 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ (𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ)) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8483anassrs 471 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8558, 84eqtrd 2833 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0)
86 hicl 28873 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8786ancoms 462 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8849, 87mulcld 10653 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
89 mulcl 10613 . . . . . . . . . . . . . . 15 (((𝑇𝑣) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9042, 29, 89syl2anr 599 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9188, 90subeq0ad 10999 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9291adantll 713 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9385, 92mpbid 235 . . . . . . . . . . 11 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9493adantlr 714 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9588adantlr 714 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
9642adantl 485 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
9730, 33jca 515 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
9897adantr 484 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
99 divmul3 11295 . . . . . . . . . . . 12 ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10095, 96, 98, 99syl3anc 1368 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
101100adantlll 717 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10294, 101mpbird 260 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣))
10327adantr 484 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
10487adantlr 714 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
105 div23 11309 . . . . . . . . . . . 12 (((𝑇𝑢) ∈ ℂ ∧ (𝑣 ·ih 𝑢) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
106103, 104, 98, 105syl3anc 1368 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
10734adantr 484 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
108 simpr 488 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
109 simpll 766 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
110 his52 28880 . . . . . . . . . . . 12 ((((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
111107, 108, 109, 110syl3anc 1368 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
112106, 111eqtr4d 2836 . . . . . . . . . 10 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
113112adantlll 717 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
114102, 113eqtr3d 2835 . . . . . . . 8 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
115114ralrimiva 3149 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
116 oveq2 7144 . . . . . . . . . 10 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (𝑣 ·ih 𝑤) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
117116eqeq2d 2809 . . . . . . . . 9 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
118117ralbidv 3162 . . . . . . . 8 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
119118rspcev 3571 . . . . . . 7 ((((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12039, 115, 119syl2anc 587 . . . . . 6 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
121120ex 416 . . . . 5 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
12225, 121mpdan 686 . . . 4 (𝑢 ∈ (⊥‘(null‘𝑇)) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
123122rexlimiv 3239 . . 3 (∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12424, 123sylbi 220 . 2 ((⊥‘(null‘𝑇)) ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12522, 124pm2.61ine 3070 1 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  0cc0 10529   · cmul 10534   − cmin 10862   / cdiv 11289  ∗ccj 14450   ℋchba 28712   ·ℎ csm 28714   ·ih csp 28715  0ℎc0v 28717   −ℎ cmv 28718  ⊥cort 28723  0ℋc0h 28728  nullcnl 28745  ContFnccnfn 28746  LinFnclf 28747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609  ax-hilex 28792  ax-hfvadd 28793  ax-hvcom 28794  ax-hvass 28795  ax-hv0cl 28796  ax-hvaddid 28797  ax-hfvmul 28798  ax-hvmulid 28799  ax-hvmulass 28800  ax-hvdistr1 28801  ax-hvdistr2 28802  ax-hvmul0 28803  ax-hfi 28872  ax-his1 28875  ax-his2 28876  ax-his3 28877  ax-his4 28878  ax-hcompl 28995 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-acn 9358  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-cn 21842  df-cnp 21843  df-lm 21844  df-haus 21930  df-tx 22177  df-hmeo 22370  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-xms 22937  df-ms 22938  df-tms 22939  df-cfil 23869  df-cau 23870  df-cmet 23871  df-grpo 28286  df-gid 28287  df-ginv 28288  df-gdiv 28289  df-ablo 28338  df-vc 28352  df-nv 28385  df-va 28388  df-ba 28389  df-sm 28390  df-0v 28391  df-vs 28392  df-nmcv 28393  df-ims 28394  df-dip 28494  df-ssp 28515  df-ph 28606  df-cbn 28656  df-hnorm 28761  df-hba 28762  df-hvsub 28764  df-hlim 28765  df-hcau 28766  df-sh 29000  df-ch 29014  df-oc 29045  df-ch0 29046  df-nlfn 29639  df-cnfn 29640  df-lnfn 29641 This theorem is referenced by:  riesz4i  29856  riesz1  29858
 Copyright terms: Public domain W3C validator