HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Structured version   Visualization version   GIF version

Theorem riesz3i 32006
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
riesz3i 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Distinct variable group:   𝑤,𝑣,𝑇

Proof of Theorem riesz3i
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 30947 . . 3 0 ∈ ℋ
2 nlelch.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfnfi 31985 . . . . . 6 𝑇: ℋ⟶ℂ
4 fveq2 6822 . . . . . . . . 9 ((⊥‘(null‘𝑇)) = 0 → (⊥‘(⊥‘(null‘𝑇))) = (⊥‘0))
5 nlelch.2 . . . . . . . . . . 11 𝑇 ∈ ContFn
62, 5nlelchi 32005 . . . . . . . . . 10 (null‘𝑇) ∈ C
76ococi 31349 . . . . . . . . 9 (⊥‘(⊥‘(null‘𝑇))) = (null‘𝑇)
8 choc0 31270 . . . . . . . . 9 (⊥‘0) = ℋ
94, 7, 83eqtr3g 2787 . . . . . . . 8 ((⊥‘(null‘𝑇)) = 0 → (null‘𝑇) = ℋ)
109eleq2d 2814 . . . . . . 7 ((⊥‘(null‘𝑇)) = 0 → (𝑣 ∈ (null‘𝑇) ↔ 𝑣 ∈ ℋ))
1110biimpar 477 . . . . . 6 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → 𝑣 ∈ (null‘𝑇))
12 elnlfn2 31873 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ 𝑣 ∈ (null‘𝑇)) → (𝑇𝑣) = 0)
133, 11, 12sylancr 587 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = 0)
14 hi02 31041 . . . . . 6 (𝑣 ∈ ℋ → (𝑣 ·ih 0) = 0)
1514adantl 481 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑣 ·ih 0) = 0)
1613, 15eqtr4d 2767 . . . 4 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih 0))
1716ralrimiva 3121 . . 3 ((⊥‘(null‘𝑇)) = 0 → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0))
18 oveq2 7357 . . . . . 6 (𝑤 = 0 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 0))
1918eqeq2d 2740 . . . . 5 (𝑤 = 0 → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih 0)))
2019ralbidv 3152 . . . 4 (𝑤 = 0 → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)))
2120rspcev 3577 . . 3 ((0 ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
221, 17, 21sylancr 587 . 2 ((⊥‘(null‘𝑇)) = 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
236choccli 31251 . . . 4 (⊥‘(null‘𝑇)) ∈ C
2423chne0i 31397 . . 3 ((⊥‘(null‘𝑇)) ≠ 0 ↔ ∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0)
2523cheli 31176 . . . . 5 (𝑢 ∈ (⊥‘(null‘𝑇)) → 𝑢 ∈ ℋ)
263ffvelcdmi 7017 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑇𝑢) ∈ ℂ)
2726adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑇𝑢) ∈ ℂ)
28 hicl 31024 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑢 ·ih 𝑢) ∈ ℂ)
2928anidms 566 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑢 ·ih 𝑢) ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ∈ ℂ)
31 his6 31043 . . . . . . . . . . . . 13 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) = 0 ↔ 𝑢 = 0))
3231necon3bid 2969 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) ≠ 0 ↔ 𝑢 ≠ 0))
3332biimpar 477 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ≠ 0)
3427, 30, 33divcld 11900 . . . . . . . . . 10 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
3534cjcld 15103 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ)
36 simpl 482 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → 𝑢 ∈ ℋ)
37 hvmulcl 30957 . . . . . . . . 9 (((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3835, 36, 37syl2anc 584 . . . . . . . 8 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3938adantll 714 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
40 hvmulcl 30957 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
4126, 40sylan 580 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
423ffvelcdmi 7017 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ℋ → (𝑇𝑣) ∈ ℂ)
43 hvmulcl 30957 . . . . . . . . . . . . . . . . . 18 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4442, 43sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4544ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
46 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
47 his2sub 31036 . . . . . . . . . . . . . . . 16 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4841, 45, 46, 47syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4926adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
51 ax-his3 31028 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5249, 50, 46, 51syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5342adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
54 ax-his3 31028 . . . . . . . . . . . . . . . . 17 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5553, 46, 46, 54syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5652, 55oveq12d 7367 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)) = (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
5748, 56eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
5857adantll 714 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
59 hvsubcl 30961 . . . . . . . . . . . . . . . . . 18 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
6041, 45, 59syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
612lnfnsubi 31990 . . . . . . . . . . . . . . . . . . 19 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
6241, 45, 61syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
632lnfnmuli 31988 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
6426, 63sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
652lnfnmuli 31988 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑣) · (𝑇𝑢)))
66 mulcom 11095 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇𝑣) ∈ ℂ ∧ (𝑇𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6726, 66sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6865, 67eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6942, 68sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7069ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7164, 70oveq12d 7367 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))) = (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))))
72 mulcl 11093 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7326, 42, 72syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7473subidd 11463 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))) = 0)
7562, 71, 743eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)
76 elnlfn 31872 . . . . . . . . . . . . . . . . . 18 (𝑇: ℋ⟶ℂ → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)))
773, 76ax-mp 5 . . . . . . . . . . . . . . . . 17 ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0))
7860, 75, 77sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇))
796chssii 31175 . . . . . . . . . . . . . . . . 17 (null‘𝑇) ⊆ ℋ
80 ocorth 31235 . . . . . . . . . . . . . . . . 17 ((null‘𝑇) ⊆ ℋ → (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0))
8179, 80ax-mp 5 . . . . . . . . . . . . . . . 16 (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8278, 81sylan 580 . . . . . . . . . . . . . . 15 (((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8382ancoms 458 . . . . . . . . . . . . . 14 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ (𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ)) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8483anassrs 467 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8558, 84eqtrd 2764 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0)
86 hicl 31024 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8786ancoms 458 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8849, 87mulcld 11135 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
89 mulcl 11093 . . . . . . . . . . . . . . 15 (((𝑇𝑣) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9042, 29, 89syl2anr 597 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9188, 90subeq0ad 11485 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9291adantll 714 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9385, 92mpbid 232 . . . . . . . . . . 11 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9493adantlr 715 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9588adantlr 715 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
9642adantl 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
9730, 33jca 511 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
9897adantr 480 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
99 divmul3 11784 . . . . . . . . . . . 12 ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10095, 96, 98, 99syl3anc 1373 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
101100adantlll 718 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10294, 101mpbird 257 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣))
10327adantr 480 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
10487adantlr 715 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
105 div23 11798 . . . . . . . . . . . 12 (((𝑇𝑢) ∈ ℂ ∧ (𝑣 ·ih 𝑢) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
106103, 104, 98, 105syl3anc 1373 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
10734adantr 480 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
108 simpr 484 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
109 simpll 766 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
110 his52 31031 . . . . . . . . . . . 12 ((((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
111107, 108, 109, 110syl3anc 1373 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
112106, 111eqtr4d 2767 . . . . . . . . . 10 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
113112adantlll 718 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
114102, 113eqtr3d 2766 . . . . . . . 8 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
115114ralrimiva 3121 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
116 oveq2 7357 . . . . . . . . . 10 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (𝑣 ·ih 𝑤) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
117116eqeq2d 2740 . . . . . . . . 9 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
118117ralbidv 3152 . . . . . . . 8 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
119118rspcev 3577 . . . . . . 7 ((((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12039, 115, 119syl2anc 584 . . . . . 6 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
121120ex 412 . . . . 5 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
12225, 121mpdan 687 . . . 4 (𝑢 ∈ (⊥‘(null‘𝑇)) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
123122rexlimiv 3123 . . 3 (∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12424, 123sylbi 217 . 2 ((⊥‘(null‘𝑇)) ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12522, 124pm2.61ine 3008 1 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   · cmul 11014  cmin 11347   / cdiv 11777  ccj 15003  chba 30863   · csm 30865   ·ih csp 30866  0c0v 30868   cmv 30869  cort 30874  0c0h 30879  nullcnl 30896  ContFnccnfn 30897  LinFnclf 30898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029  ax-hcompl 31146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cfil 25153  df-cau 25154  df-cmet 25155  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-ssp 30666  df-ph 30757  df-cbn 30807  df-hnorm 30912  df-hba 30913  df-hvsub 30915  df-hlim 30916  df-hcau 30917  df-sh 31151  df-ch 31165  df-oc 31196  df-ch0 31197  df-nlfn 31790  df-cnfn 31791  df-lnfn 31792
This theorem is referenced by:  riesz4i  32007  riesz1  32009
  Copyright terms: Public domain W3C validator