HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Structured version   Visualization version   GIF version

Theorem riesz3i 30424
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
riesz3i 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Distinct variable group:   𝑤,𝑣,𝑇

Proof of Theorem riesz3i
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 29365 . . 3 0 ∈ ℋ
2 nlelch.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfnfi 30403 . . . . . 6 𝑇: ℋ⟶ℂ
4 fveq2 6774 . . . . . . . . 9 ((⊥‘(null‘𝑇)) = 0 → (⊥‘(⊥‘(null‘𝑇))) = (⊥‘0))
5 nlelch.2 . . . . . . . . . . 11 𝑇 ∈ ContFn
62, 5nlelchi 30423 . . . . . . . . . 10 (null‘𝑇) ∈ C
76ococi 29767 . . . . . . . . 9 (⊥‘(⊥‘(null‘𝑇))) = (null‘𝑇)
8 choc0 29688 . . . . . . . . 9 (⊥‘0) = ℋ
94, 7, 83eqtr3g 2801 . . . . . . . 8 ((⊥‘(null‘𝑇)) = 0 → (null‘𝑇) = ℋ)
109eleq2d 2824 . . . . . . 7 ((⊥‘(null‘𝑇)) = 0 → (𝑣 ∈ (null‘𝑇) ↔ 𝑣 ∈ ℋ))
1110biimpar 478 . . . . . 6 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → 𝑣 ∈ (null‘𝑇))
12 elnlfn2 30291 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ 𝑣 ∈ (null‘𝑇)) → (𝑇𝑣) = 0)
133, 11, 12sylancr 587 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = 0)
14 hi02 29459 . . . . . 6 (𝑣 ∈ ℋ → (𝑣 ·ih 0) = 0)
1514adantl 482 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑣 ·ih 0) = 0)
1613, 15eqtr4d 2781 . . . 4 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih 0))
1716ralrimiva 3103 . . 3 ((⊥‘(null‘𝑇)) = 0 → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0))
18 oveq2 7283 . . . . . 6 (𝑤 = 0 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 0))
1918eqeq2d 2749 . . . . 5 (𝑤 = 0 → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih 0)))
2019ralbidv 3112 . . . 4 (𝑤 = 0 → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)))
2120rspcev 3561 . . 3 ((0 ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
221, 17, 21sylancr 587 . 2 ((⊥‘(null‘𝑇)) = 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
236choccli 29669 . . . 4 (⊥‘(null‘𝑇)) ∈ C
2423chne0i 29815 . . 3 ((⊥‘(null‘𝑇)) ≠ 0 ↔ ∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0)
2523cheli 29594 . . . . 5 (𝑢 ∈ (⊥‘(null‘𝑇)) → 𝑢 ∈ ℋ)
263ffvelrni 6960 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑇𝑢) ∈ ℂ)
2726adantr 481 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑇𝑢) ∈ ℂ)
28 hicl 29442 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑢 ·ih 𝑢) ∈ ℂ)
2928anidms 567 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑢 ·ih 𝑢) ∈ ℂ)
3029adantr 481 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ∈ ℂ)
31 his6 29461 . . . . . . . . . . . . 13 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) = 0 ↔ 𝑢 = 0))
3231necon3bid 2988 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) ≠ 0 ↔ 𝑢 ≠ 0))
3332biimpar 478 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ≠ 0)
3427, 30, 33divcld 11751 . . . . . . . . . 10 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
3534cjcld 14907 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ)
36 simpl 483 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → 𝑢 ∈ ℋ)
37 hvmulcl 29375 . . . . . . . . 9 (((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3835, 36, 37syl2anc 584 . . . . . . . 8 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3938adantll 711 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
40 hvmulcl 29375 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
4126, 40sylan 580 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
423ffvelrni 6960 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ℋ → (𝑇𝑣) ∈ ℂ)
43 hvmulcl 29375 . . . . . . . . . . . . . . . . . 18 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4442, 43sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4544ancoms 459 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
46 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
47 his2sub 29454 . . . . . . . . . . . . . . . 16 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4841, 45, 46, 47syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4926adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
50 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
51 ax-his3 29446 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5249, 50, 46, 51syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5342adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
54 ax-his3 29446 . . . . . . . . . . . . . . . . 17 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5553, 46, 46, 54syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5652, 55oveq12d 7293 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)) = (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
5748, 56eqtr2d 2779 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
5857adantll 711 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
59 hvsubcl 29379 . . . . . . . . . . . . . . . . . 18 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
6041, 45, 59syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
612lnfnsubi 30408 . . . . . . . . . . . . . . . . . . 19 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
6241, 45, 61syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
632lnfnmuli 30406 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
6426, 63sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
652lnfnmuli 30406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑣) · (𝑇𝑢)))
66 mulcom 10957 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇𝑣) ∈ ℂ ∧ (𝑇𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6726, 66sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6865, 67eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6942, 68sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7069ancoms 459 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7164, 70oveq12d 7293 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))) = (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))))
72 mulcl 10955 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7326, 42, 72syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7473subidd 11320 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))) = 0)
7562, 71, 743eqtrd 2782 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)
76 elnlfn 30290 . . . . . . . . . . . . . . . . . 18 (𝑇: ℋ⟶ℂ → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)))
773, 76ax-mp 5 . . . . . . . . . . . . . . . . 17 ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0))
7860, 75, 77sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇))
796chssii 29593 . . . . . . . . . . . . . . . . 17 (null‘𝑇) ⊆ ℋ
80 ocorth 29653 . . . . . . . . . . . . . . . . 17 ((null‘𝑇) ⊆ ℋ → (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0))
8179, 80ax-mp 5 . . . . . . . . . . . . . . . 16 (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8278, 81sylan 580 . . . . . . . . . . . . . . 15 (((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8382ancoms 459 . . . . . . . . . . . . . 14 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ (𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ)) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8483anassrs 468 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8558, 84eqtrd 2778 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0)
86 hicl 29442 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8786ancoms 459 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8849, 87mulcld 10995 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
89 mulcl 10955 . . . . . . . . . . . . . . 15 (((𝑇𝑣) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9042, 29, 89syl2anr 597 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9188, 90subeq0ad 11342 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9291adantll 711 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9385, 92mpbid 231 . . . . . . . . . . 11 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9493adantlr 712 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9588adantlr 712 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
9642adantl 482 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
9730, 33jca 512 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
9897adantr 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
99 divmul3 11638 . . . . . . . . . . . 12 ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10095, 96, 98, 99syl3anc 1370 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
101100adantlll 715 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10294, 101mpbird 256 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣))
10327adantr 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
10487adantlr 712 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
105 div23 11652 . . . . . . . . . . . 12 (((𝑇𝑢) ∈ ℂ ∧ (𝑣 ·ih 𝑢) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
106103, 104, 98, 105syl3anc 1370 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
10734adantr 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
108 simpr 485 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
109 simpll 764 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
110 his52 29449 . . . . . . . . . . . 12 ((((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
111107, 108, 109, 110syl3anc 1370 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
112106, 111eqtr4d 2781 . . . . . . . . . 10 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
113112adantlll 715 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
114102, 113eqtr3d 2780 . . . . . . . 8 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
115114ralrimiva 3103 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
116 oveq2 7283 . . . . . . . . . 10 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (𝑣 ·ih 𝑤) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
117116eqeq2d 2749 . . . . . . . . 9 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
118117ralbidv 3112 . . . . . . . 8 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
119118rspcev 3561 . . . . . . 7 ((((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12039, 115, 119syl2anc 584 . . . . . 6 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
121120ex 413 . . . . 5 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
12225, 121mpdan 684 . . . 4 (𝑢 ∈ (⊥‘(null‘𝑇)) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
123122rexlimiv 3209 . . 3 (∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12424, 123sylbi 216 . 2 ((⊥‘(null‘𝑇)) ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12522, 124pm2.61ine 3028 1 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   · cmul 10876  cmin 11205   / cdiv 11632  ccj 14807  chba 29281   · csm 29283   ·ih csp 29284  0c0v 29286   cmv 29287  cort 29292  0c0h 29297  nullcnl 29314  ContFnccnfn 29315  LinFnclf 29316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-nlfn 30208  df-cnfn 30209  df-lnfn 30210
This theorem is referenced by:  riesz4i  30425  riesz1  30427
  Copyright terms: Public domain W3C validator