HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Structured version   Visualization version   GIF version

Theorem riesz3i 32041
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
riesz3i 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Distinct variable group:   𝑤,𝑣,𝑇

Proof of Theorem riesz3i
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 30982 . . 3 0 ∈ ℋ
2 nlelch.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfnfi 32020 . . . . . 6 𝑇: ℋ⟶ℂ
4 fveq2 6840 . . . . . . . . 9 ((⊥‘(null‘𝑇)) = 0 → (⊥‘(⊥‘(null‘𝑇))) = (⊥‘0))
5 nlelch.2 . . . . . . . . . . 11 𝑇 ∈ ContFn
62, 5nlelchi 32040 . . . . . . . . . 10 (null‘𝑇) ∈ C
76ococi 31384 . . . . . . . . 9 (⊥‘(⊥‘(null‘𝑇))) = (null‘𝑇)
8 choc0 31305 . . . . . . . . 9 (⊥‘0) = ℋ
94, 7, 83eqtr3g 2787 . . . . . . . 8 ((⊥‘(null‘𝑇)) = 0 → (null‘𝑇) = ℋ)
109eleq2d 2814 . . . . . . 7 ((⊥‘(null‘𝑇)) = 0 → (𝑣 ∈ (null‘𝑇) ↔ 𝑣 ∈ ℋ))
1110biimpar 477 . . . . . 6 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → 𝑣 ∈ (null‘𝑇))
12 elnlfn2 31908 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ 𝑣 ∈ (null‘𝑇)) → (𝑇𝑣) = 0)
133, 11, 12sylancr 587 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = 0)
14 hi02 31076 . . . . . 6 (𝑣 ∈ ℋ → (𝑣 ·ih 0) = 0)
1514adantl 481 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑣 ·ih 0) = 0)
1613, 15eqtr4d 2767 . . . 4 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih 0))
1716ralrimiva 3125 . . 3 ((⊥‘(null‘𝑇)) = 0 → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0))
18 oveq2 7377 . . . . . 6 (𝑤 = 0 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 0))
1918eqeq2d 2740 . . . . 5 (𝑤 = 0 → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih 0)))
2019ralbidv 3156 . . . 4 (𝑤 = 0 → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)))
2120rspcev 3585 . . 3 ((0 ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
221, 17, 21sylancr 587 . 2 ((⊥‘(null‘𝑇)) = 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
236choccli 31286 . . . 4 (⊥‘(null‘𝑇)) ∈ C
2423chne0i 31432 . . 3 ((⊥‘(null‘𝑇)) ≠ 0 ↔ ∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0)
2523cheli 31211 . . . . 5 (𝑢 ∈ (⊥‘(null‘𝑇)) → 𝑢 ∈ ℋ)
263ffvelcdmi 7037 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑇𝑢) ∈ ℂ)
2726adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑇𝑢) ∈ ℂ)
28 hicl 31059 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑢 ·ih 𝑢) ∈ ℂ)
2928anidms 566 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑢 ·ih 𝑢) ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ∈ ℂ)
31 his6 31078 . . . . . . . . . . . . 13 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) = 0 ↔ 𝑢 = 0))
3231necon3bid 2969 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) ≠ 0 ↔ 𝑢 ≠ 0))
3332biimpar 477 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ≠ 0)
3427, 30, 33divcld 11934 . . . . . . . . . 10 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
3534cjcld 15138 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ)
36 simpl 482 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → 𝑢 ∈ ℋ)
37 hvmulcl 30992 . . . . . . . . 9 (((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3835, 36, 37syl2anc 584 . . . . . . . 8 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3938adantll 714 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
40 hvmulcl 30992 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
4126, 40sylan 580 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
423ffvelcdmi 7037 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ℋ → (𝑇𝑣) ∈ ℂ)
43 hvmulcl 30992 . . . . . . . . . . . . . . . . . 18 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4442, 43sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4544ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
46 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
47 his2sub 31071 . . . . . . . . . . . . . . . 16 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4841, 45, 46, 47syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4926adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
50 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
51 ax-his3 31063 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5249, 50, 46, 51syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5342adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
54 ax-his3 31063 . . . . . . . . . . . . . . . . 17 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5553, 46, 46, 54syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5652, 55oveq12d 7387 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)) = (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
5748, 56eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
5857adantll 714 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
59 hvsubcl 30996 . . . . . . . . . . . . . . . . . 18 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
6041, 45, 59syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
612lnfnsubi 32025 . . . . . . . . . . . . . . . . . . 19 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
6241, 45, 61syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
632lnfnmuli 32023 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
6426, 63sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
652lnfnmuli 32023 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑣) · (𝑇𝑢)))
66 mulcom 11130 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇𝑣) ∈ ℂ ∧ (𝑇𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6726, 66sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6865, 67eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6942, 68sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7069ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7164, 70oveq12d 7387 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))) = (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))))
72 mulcl 11128 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7326, 42, 72syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7473subidd 11497 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))) = 0)
7562, 71, 743eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)
76 elnlfn 31907 . . . . . . . . . . . . . . . . . 18 (𝑇: ℋ⟶ℂ → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)))
773, 76ax-mp 5 . . . . . . . . . . . . . . . . 17 ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0))
7860, 75, 77sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇))
796chssii 31210 . . . . . . . . . . . . . . . . 17 (null‘𝑇) ⊆ ℋ
80 ocorth 31270 . . . . . . . . . . . . . . . . 17 ((null‘𝑇) ⊆ ℋ → (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0))
8179, 80ax-mp 5 . . . . . . . . . . . . . . . 16 (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8278, 81sylan 580 . . . . . . . . . . . . . . 15 (((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8382ancoms 458 . . . . . . . . . . . . . 14 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ (𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ)) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8483anassrs 467 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8558, 84eqtrd 2764 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0)
86 hicl 31059 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8786ancoms 458 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8849, 87mulcld 11170 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
89 mulcl 11128 . . . . . . . . . . . . . . 15 (((𝑇𝑣) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9042, 29, 89syl2anr 597 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9188, 90subeq0ad 11519 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9291adantll 714 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9385, 92mpbid 232 . . . . . . . . . . 11 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9493adantlr 715 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9588adantlr 715 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
9642adantl 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
9730, 33jca 511 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
9897adantr 480 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
99 divmul3 11818 . . . . . . . . . . . 12 ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10095, 96, 98, 99syl3anc 1373 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
101100adantlll 718 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10294, 101mpbird 257 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣))
10327adantr 480 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
10487adantlr 715 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
105 div23 11832 . . . . . . . . . . . 12 (((𝑇𝑢) ∈ ℂ ∧ (𝑣 ·ih 𝑢) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
106103, 104, 98, 105syl3anc 1373 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
10734adantr 480 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
108 simpr 484 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
109 simpll 766 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
110 his52 31066 . . . . . . . . . . . 12 ((((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
111107, 108, 109, 110syl3anc 1373 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
112106, 111eqtr4d 2767 . . . . . . . . . 10 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
113112adantlll 718 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
114102, 113eqtr3d 2766 . . . . . . . 8 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
115114ralrimiva 3125 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
116 oveq2 7377 . . . . . . . . . 10 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (𝑣 ·ih 𝑤) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
117116eqeq2d 2740 . . . . . . . . 9 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
118117ralbidv 3156 . . . . . . . 8 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
119118rspcev 3585 . . . . . . 7 ((((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12039, 115, 119syl2anc 584 . . . . . 6 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
121120ex 412 . . . . 5 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
12225, 121mpdan 687 . . . 4 (𝑢 ∈ (⊥‘(null‘𝑇)) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
123122rexlimiv 3127 . . 3 (∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12424, 123sylbi 217 . 2 ((⊥‘(null‘𝑇)) ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12522, 124pm2.61ine 3008 1 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   · cmul 11049  cmin 11381   / cdiv 11811  ccj 15038  chba 30898   · csm 30900   ·ih csp 30901  0c0v 30903   cmv 30904  cort 30909  0c0h 30914  nullcnl 30931  ContFnccnfn 30932  LinFnclf 30933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvmulass 30986  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064  ax-hcompl 31181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-cnp 23148  df-lm 23149  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cfil 25188  df-cau 25189  df-cmet 25190  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579  df-ims 30580  df-dip 30680  df-ssp 30701  df-ph 30792  df-cbn 30842  df-hnorm 30947  df-hba 30948  df-hvsub 30950  df-hlim 30951  df-hcau 30952  df-sh 31186  df-ch 31200  df-oc 31231  df-ch0 31232  df-nlfn 31825  df-cnfn 31826  df-lnfn 31827
This theorem is referenced by:  riesz4i  32042  riesz1  32044
  Copyright terms: Public domain W3C validator