![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemelo | Structured version Visualization version GIF version |
Description: Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
Ref | Expression |
---|---|
ballotlemelo | ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6916 | . . 3 ⊢ (𝑑 = 𝐶 → ((♯‘𝑑) = 𝑀 ↔ (♯‘𝐶) = 𝑀)) | |
2 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
3 | fveqeq2 6916 | . . . . 5 ⊢ (𝑐 = 𝑑 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑑) = 𝑀)) | |
4 | 3 | cbvrabv 3444 | . . . 4 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀} |
5 | 2, 4 | eqtri 2763 | . . 3 ⊢ 𝑂 = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀} |
6 | 1, 5 | elrab2 3698 | . 2 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
7 | ovex 7464 | . . . 4 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
8 | 7 | elpw2 5340 | . . 3 ⊢ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
9 | 8 | anbi1i 624 | . 2 ⊢ ((𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀) ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
10 | 6, 9 | bitri 275 | 1 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ⊆ wss 3963 𝒫 cpw 4605 ‘cfv 6563 (class class class)co 7431 1c1 11154 + caddc 11156 ℕcn 12264 ...cfz 13544 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: ballotlemscr 34500 ballotlemro 34504 ballotlemfg 34507 ballotlemfrc 34508 ballotlemfrceq 34510 ballotlemrinv0 34514 |
Copyright terms: Public domain | W3C validator |