Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemelo Structured version   Visualization version   GIF version

Theorem ballotlemelo 34043
Description: Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemelo (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem ballotlemelo
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6900 . . 3 (𝑑 = 𝐶 → ((♯‘𝑑) = 𝑀 ↔ (♯‘𝐶) = 𝑀))
2 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
3 fveqeq2 6900 . . . . 5 (𝑐 = 𝑑 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑑) = 𝑀))
43cbvrabv 3437 . . . 4 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀}
52, 4eqtri 2755 . . 3 𝑂 = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀}
61, 5elrab2 3683 . 2 (𝐶𝑂 ↔ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
7 ovex 7447 . . . 4 (1...(𝑀 + 𝑁)) ∈ V
87elpw2 5341 . . 3 (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝐶 ⊆ (1...(𝑀 + 𝑁)))
98anbi1i 623 . 2 ((𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀) ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
106, 9bitri 275 1 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3427  wss 3944  𝒫 cpw 4598  cfv 6542  (class class class)co 7414  1c1 11131   + caddc 11133  cn 12234  ...cfz 13508  chash 14313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417
This theorem is referenced by:  ballotlemscr  34074  ballotlemro  34078  ballotlemfg  34081  ballotlemfrc  34082  ballotlemfrceq  34084  ballotlemrinv0  34088
  Copyright terms: Public domain W3C validator