Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemelo Structured version   Visualization version   GIF version

Theorem ballotlemelo 34428
Description: Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
Assertion
Ref Expression
ballotlemelo (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem ballotlemelo
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6881 . . 3 (𝑑 = 𝐶 → ((♯‘𝑑) = 𝑀 ↔ (♯‘𝐶) = 𝑀))
2 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
3 fveqeq2 6881 . . . . 5 (𝑐 = 𝑑 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑑) = 𝑀))
43cbvrabv 3424 . . . 4 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀}
52, 4eqtri 2757 . . 3 𝑂 = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀}
61, 5elrab2 3672 . 2 (𝐶𝑂 ↔ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
7 ovex 7432 . . . 4 (1...(𝑀 + 𝑁)) ∈ V
87elpw2 5301 . . 3 (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝐶 ⊆ (1...(𝑀 + 𝑁)))
98anbi1i 624 . 2 ((𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀) ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
106, 9bitri 275 1 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3413  wss 3924  𝒫 cpw 4573  cfv 6527  (class class class)co 7399  1c1 11122   + caddc 11124  cn 12232  ...cfz 13513  chash 14336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-iota 6480  df-fv 6535  df-ov 7402
This theorem is referenced by:  ballotlemscr  34459  ballotlemro  34463  ballotlemfg  34466  ballotlemfrc  34467  ballotlemfrceq  34469  ballotlemrinv0  34473
  Copyright terms: Public domain W3C validator