![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemelo | Structured version Visualization version GIF version |
Description: Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
Ref | Expression |
---|---|
ballotlemelo | ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6446 | . . 3 ⊢ (𝑑 = 𝐶 → ((♯‘𝑑) = 𝑀 ↔ (♯‘𝐶) = 𝑀)) | |
2 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
3 | fveqeq2 6446 | . . . . 5 ⊢ (𝑐 = 𝑑 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑑) = 𝑀)) | |
4 | 3 | cbvrabv 3412 | . . . 4 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀} |
5 | 2, 4 | eqtri 2849 | . . 3 ⊢ 𝑂 = {𝑑 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑑) = 𝑀} |
6 | 1, 5 | elrab2 3589 | . 2 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
7 | ovex 6942 | . . . 4 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
8 | 7 | elpw2 5052 | . . 3 ⊢ (𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
9 | 8 | anbi1i 617 | . 2 ⊢ ((𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀) ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
10 | 6, 9 | bitri 267 | 1 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {crab 3121 ⊆ wss 3798 𝒫 cpw 4380 ‘cfv 6127 (class class class)co 6910 1c1 10260 + caddc 10262 ℕcn 11357 ...cfz 12626 ♯chash 13417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-iota 6090 df-fv 6135 df-ov 6913 |
This theorem is referenced by: ballotlemscr 31122 ballotlemro 31126 ballotlemfg 31129 ballotlemfrc 31130 ballotlemfrceq 31132 ballotlemrinv0 31136 |
Copyright terms: Public domain | W3C validator |