Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrinv0 Structured version   Visualization version   GIF version

Theorem ballotlemrinv0 34283
Description: Lemma for ballotlemrinv 34284. (Contributed by Thierry Arnoux, 18-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrinv0 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘   𝐷,𝑖,𝑘   𝑆,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁,𝑖,𝑘
Allowed substitution hints:   𝐶(𝑐)   𝐷(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrinv0
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . 6 𝑁 < 𝑀
8 ballotth.i . . . . . 6 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . 6 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrval 34268 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
1211adantr 479 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
13 simpr 483 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 = ((𝑆𝐶) “ 𝐶))
1412, 13eqtr4d 2768 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = 𝐷)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 34281 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
1615adantr 479 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) ∈ (𝑂𝐸))
1714, 16eqeltrrd 2826 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂𝐸))
181, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 34264 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1918simprd 494 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
2019adantr 479 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2120eqcomd 2731 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2221, 13imaeq12d 6065 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)))
23 simpl 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂𝐸))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemirc 34282 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2524adantr 479 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2614fveq2d 6900 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐷))
2725, 26eqtr3d 2767 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼𝐶) = (𝐼𝐷))
281, 2, 3, 4, 5, 6, 7, 8, 9ballotlemieq 34267 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 ∈ (𝑂𝐸) ∧ (𝐼𝐶) = (𝐼𝐷)) → (𝑆𝐶) = (𝑆𝐷))
2923, 17, 27, 28syl3anc 1368 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐷))
3029imaeq1d 6063 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐷) “ 𝐷))
3118simpld 493 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
32 f1of1 6837 . . . . 5 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
3323, 31, 323syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
34 eldifi 4123 . . . . 5 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
351, 2, 3ballotlemelo 34238 . . . . . 6 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
3635simplbi 496 . . . . 5 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
3723, 34, 363syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
38 f1imacnv 6854 . . . 4 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
3933, 37, 38syl2anc 582 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
4022, 30, 393eqtr3rd 2774 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 = ((𝑆𝐷) “ 𝐷))
4117, 40jca 510 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  cdif 3941  cin 3943  wss 3944  ifcif 4530  𝒫 cpw 4604   class class class wbr 5149  cmpt 5232  ccnv 5677  cima 5681  1-1wf1 6546  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  infcinf 9466  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  cn 12245  cz 12591  ...cfz 13519  chash 14325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-hash 14326
This theorem is referenced by:  ballotlemrinv  34284
  Copyright terms: Public domain W3C validator