Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrinv0 Structured version   Visualization version   GIF version

Theorem ballotlemrinv0 30934
Description: Lemma for ballotlemrinv 30935. (Contributed by Thierry Arnoux, 18-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrinv0 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘   𝐷,𝑖,𝑘   𝑆,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁,𝑖,𝑘
Allowed substitution hints:   𝐶(𝑐)   𝐷(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrinv0
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . 6 𝑁 < 𝑀
8 ballotth.i . . . . . 6 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . 6 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrval 30919 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
1211adantr 466 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
13 simpr 471 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 = ((𝑆𝐶) “ 𝐶))
1412, 13eqtr4d 2808 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = 𝐷)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 30932 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
1615adantr 466 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) ∈ (𝑂𝐸))
1714, 16eqeltrrd 2851 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂𝐸))
181, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 30915 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1918simprd 483 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
2019adantr 466 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2120eqcomd 2777 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2221, 13imaeq12d 5607 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)))
23 simpl 468 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂𝐸))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemirc 30933 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2524adantr 466 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2614fveq2d 6337 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐷))
2725, 26eqtr3d 2807 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼𝐶) = (𝐼𝐷))
281, 2, 3, 4, 5, 6, 7, 8, 9ballotlemieq 30918 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 ∈ (𝑂𝐸) ∧ (𝐼𝐶) = (𝐼𝐷)) → (𝑆𝐶) = (𝑆𝐷))
2923, 17, 27, 28syl3anc 1476 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐷))
3029imaeq1d 5605 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐷) “ 𝐷))
3118simpld 482 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
32 f1of1 6278 . . . . 5 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
3323, 31, 323syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
34 eldifi 3883 . . . . 5 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
351, 2, 3ballotlemelo 30889 . . . . . 6 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
3635simplbi 485 . . . . 5 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
3723, 34, 363syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
38 f1imacnv 6295 . . . 4 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
3933, 37, 38syl2anc 573 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
4022, 30, 393eqtr3rd 2814 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 = ((𝑆𝐷) “ 𝐷))
4117, 40jca 501 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065  cdif 3720  cin 3722  wss 3723  ifcif 4226  𝒫 cpw 4298   class class class wbr 4787  cmpt 4864  ccnv 5249  cima 5253  1-1wf1 6027  1-1-ontowf1o 6029  cfv 6030  (class class class)co 6796  infcinf 8507  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   < clt 10280  cle 10281  cmin 10472   / cdiv 10890  cn 11226  cz 11584  ...cfz 12533  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-hash 13322
This theorem is referenced by:  ballotlemrinv  30935
  Copyright terms: Public domain W3C validator