Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemrinv0 Structured version   Visualization version   GIF version

Theorem ballotlemrinv0 34531
Description: Lemma for ballotlemrinv 34532. (Contributed by Thierry Arnoux, 18-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemrinv0 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘   𝐷,𝑖,𝑘   𝑆,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁,𝑖,𝑘
Allowed substitution hints:   𝐶(𝑐)   𝐷(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemrinv0
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . 6 𝑁 < 𝑀
8 ballotth.i . . . . . 6 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . 6 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrval 34516 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
1211adantr 480 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
13 simpr 484 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 = ((𝑆𝐶) “ 𝐶))
1412, 13eqtr4d 2768 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) = 𝐷)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 34529 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ (𝑂𝐸))
1615adantr 480 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑅𝐶) ∈ (𝑂𝐸))
1714, 16eqeltrrd 2830 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂𝐸))
181, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 34512 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1918simprd 495 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
2019adantr 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2120eqcomd 2736 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐶))
2221, 13imaeq12d 6035 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)))
23 simpl 482 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂𝐸))
241, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemirc 34530 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2524adantr 480 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐶))
2614fveq2d 6865 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼‘(𝑅𝐶)) = (𝐼𝐷))
2725, 26eqtr3d 2767 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐼𝐶) = (𝐼𝐷))
281, 2, 3, 4, 5, 6, 7, 8, 9ballotlemieq 34515 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 ∈ (𝑂𝐸) ∧ (𝐼𝐶) = (𝐼𝐷)) → (𝑆𝐶) = (𝑆𝐷))
2923, 17, 27, 28syl3anc 1373 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶) = (𝑆𝐷))
3029imaeq1d 6033 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ 𝐷) = ((𝑆𝐷) “ 𝐷))
3118simpld 494 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
32 f1of1 6802 . . . . 5 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
3323, 31, 323syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
34 eldifi 4097 . . . . 5 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
351, 2, 3ballotlemelo 34486 . . . . . 6 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
3635simplbi 497 . . . . 5 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
3723, 34, 363syl 18 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
38 f1imacnv 6819 . . . 4 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
3933, 37, 38syl2anc 584 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → ((𝑆𝐶) “ ((𝑆𝐶) “ 𝐶)) = 𝐶)
4022, 30, 393eqtr3rd 2774 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → 𝐶 = ((𝑆𝐷) “ 𝐷))
4117, 40jca 511 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐷 = ((𝑆𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂𝐸) ∧ 𝐶 = ((𝑆𝐷) “ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  cin 3916  wss 3917  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cz 12536  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-hash 14303
This theorem is referenced by:  ballotlemrinv  34532
  Copyright terms: Public domain W3C validator