| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrinv0 | Structured version Visualization version GIF version | ||
| Description: Lemma for ballotlemrinv 34568. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| Ref | Expression |
|---|---|
| ballotlemrinv0 | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 7 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
| 8 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 9 | ballotth.s | . . . . . 6 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 10 | ballotth.r | . . . . . 6 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrval 34552 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐷 = ((𝑆‘𝐶) “ 𝐶)) | |
| 14 | 12, 13 | eqtr4d 2771 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) = 𝐷) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrc 34565 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
| 17 | 14, 16 | eqeltrrd 2834 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂 ∖ 𝐸)) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 34548 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
| 19 | 18 | simprd 495 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
| 21 | 20 | eqcomd 2739 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶) = ◡(𝑆‘𝐶)) |
| 22 | 21, 13 | imaeq12d 6014 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ((𝑆‘𝐶) “ 𝐷) = (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶))) |
| 23 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂 ∖ 𝐸)) | |
| 24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemirc 34566 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |
| 26 | 14 | fveq2d 6832 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐷)) |
| 27 | 25, 26 | eqtr3d 2770 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘𝐶) = (𝐼‘𝐷)) |
| 28 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemieq 34551 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
| 29 | 23, 17, 27, 28 | syl3anc 1373 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
| 30 | 29 | imaeq1d 6012 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ((𝑆‘𝐶) “ 𝐷) = ((𝑆‘𝐷) “ 𝐷)) |
| 31 | 18 | simpld 494 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
| 32 | f1of1 6767 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | |
| 33 | 23, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
| 34 | eldifi 4080 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
| 35 | 1, 2, 3 | ballotlemelo 34522 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
| 36 | 35 | simplbi 497 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
| 37 | 23, 34, 36 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
| 38 | f1imacnv 6784 | . . . 4 ⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶)) = 𝐶) | |
| 39 | 33, 37, 38 | syl2anc 584 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶)) = 𝐶) |
| 40 | 22, 30, 39 | 3eqtr3rd 2777 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 = ((𝑆‘𝐷) “ 𝐷)) |
| 41 | 17, 40 | jca 511 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ifcif 4474 𝒫 cpw 4549 class class class wbr 5093 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 infcinf 9332 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 − cmin 11351 / cdiv 11781 ℕcn 12132 ℤcz 12475 ...cfz 13409 ♯chash 14239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-hash 14240 |
| This theorem is referenced by: ballotlemrinv 34568 |
| Copyright terms: Public domain | W3C validator |