Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrinv0 | Structured version Visualization version GIF version |
Description: Lemma for ballotlemrinv 32400. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrinv0 | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . . . 6 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . . . 6 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrval 32384 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
13 | simpr 484 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐷 = ((𝑆‘𝐶) “ 𝐶)) | |
14 | 12, 13 | eqtr4d 2781 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) = 𝐷) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrc 32397 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
17 | 14, 16 | eqeltrrd 2840 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂 ∖ 𝐸)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 32380 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
19 | 18 | simprd 495 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
21 | 20 | eqcomd 2744 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶) = ◡(𝑆‘𝐶)) |
22 | 21, 13 | imaeq12d 5959 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ((𝑆‘𝐶) “ 𝐷) = (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶))) |
23 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂 ∖ 𝐸)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemirc 32398 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |
26 | 14 | fveq2d 6760 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐷)) |
27 | 25, 26 | eqtr3d 2780 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘𝐶) = (𝐼‘𝐷)) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemieq 32383 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
29 | 23, 17, 27, 28 | syl3anc 1369 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
30 | 29 | imaeq1d 5957 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ((𝑆‘𝐶) “ 𝐷) = ((𝑆‘𝐷) “ 𝐷)) |
31 | 18 | simpld 494 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
32 | f1of1 6699 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | |
33 | 23, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
34 | eldifi 4057 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
35 | 1, 2, 3 | ballotlemelo 32354 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
36 | 35 | simplbi 497 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
37 | 23, 34, 36 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
38 | f1imacnv 6716 | . . . 4 ⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶)) = 𝐶) | |
39 | 33, 37, 38 | syl2anc 583 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶)) = 𝐶) |
40 | 22, 30, 39 | 3eqtr3rd 2787 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 = ((𝑆‘𝐷) “ 𝐷)) |
41 | 17, 40 | jca 511 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ifcif 4456 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 ℤcz 12249 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-hash 13973 |
This theorem is referenced by: ballotlemrinv 32400 |
Copyright terms: Public domain | W3C validator |