Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrinv0 | Structured version Visualization version GIF version |
Description: Lemma for ballotlemrinv 32070. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrinv0 | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . . . 6 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . . . 6 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrval 32054 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
12 | 11 | adantr 484 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
13 | simpr 488 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐷 = ((𝑆‘𝐶) “ 𝐶)) | |
14 | 12, 13 | eqtr4d 2776 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) = 𝐷) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrc 32067 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
16 | 15 | adantr 484 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
17 | 14, 16 | eqeltrrd 2834 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐷 ∈ (𝑂 ∖ 𝐸)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 32050 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
19 | 18 | simprd 499 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
20 | 19 | adantr 484 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
21 | 20 | eqcomd 2744 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶) = ◡(𝑆‘𝐶)) |
22 | 21, 13 | imaeq12d 5904 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ((𝑆‘𝐶) “ 𝐷) = (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶))) |
23 | simpl 486 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 ∈ (𝑂 ∖ 𝐸)) | |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemirc 32068 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |
25 | 24 | adantr 484 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |
26 | 14 | fveq2d 6678 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐷)) |
27 | 25, 26 | eqtr3d 2775 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐼‘𝐶) = (𝐼‘𝐷)) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemieq 32053 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
29 | 23, 17, 27, 28 | syl3anc 1372 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
30 | 29 | imaeq1d 5902 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → ((𝑆‘𝐶) “ 𝐷) = ((𝑆‘𝐷) “ 𝐷)) |
31 | 18 | simpld 498 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
32 | f1of1 6617 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | |
33 | 23, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
34 | eldifi 4017 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
35 | 1, 2, 3 | ballotlemelo 32024 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
36 | 35 | simplbi 501 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
37 | 23, 34, 36 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
38 | f1imacnv 6634 | . . . 4 ⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶)) = 𝐶) | |
39 | 33, 37, 38 | syl2anc 587 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (◡(𝑆‘𝐶) “ ((𝑆‘𝐶) “ 𝐶)) = 𝐶) |
40 | 22, 30, 39 | 3eqtr3rd 2782 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → 𝐶 = ((𝑆‘𝐷) “ 𝐷)) |
41 | 17, 40 | jca 515 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 = ((𝑆‘𝐶) “ 𝐶)) → (𝐷 ∈ (𝑂 ∖ 𝐸) ∧ 𝐶 = ((𝑆‘𝐷) “ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 {crab 3057 ∖ cdif 3840 ∩ cin 3842 ⊆ wss 3843 ifcif 4414 𝒫 cpw 4488 class class class wbr 5030 ↦ cmpt 5110 ◡ccnv 5524 “ cima 5528 –1-1→wf1 6336 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7170 infcinf 8978 ℝcr 10614 0cc0 10615 1c1 10616 + caddc 10618 < clt 10753 ≤ cle 10754 − cmin 10948 / cdiv 11375 ℕcn 11716 ℤcz 12062 ...cfz 12981 ♯chash 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-oadd 8135 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fz 12982 df-hash 13783 |
This theorem is referenced by: ballotlemrinv 32070 |
Copyright terms: Public domain | W3C validator |