Proof of Theorem ballotlemfrceq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ballotth.m | . . . . . . . . 9
⊢ 𝑀 ∈ ℕ | 
| 2 |  | ballotth.n | . . . . . . . . 9
⊢ 𝑁 ∈ ℕ | 
| 3 |  | ballotth.o | . . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | 
| 4 |  | ballotth.p | . . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | 
| 5 |  | ballotth.f | . . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) | 
| 6 |  | ballotth.e | . . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | 
| 7 |  | ballotth.mgtn | . . . . . . . . 9
⊢ 𝑁 < 𝑀 | 
| 8 |  | ballotth.i | . . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | 
| 9 |  | ballotth.s | . . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsel1i 34516 | . . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) | 
| 11 |  | 1zzd 12650 | . . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℤ) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 34505 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) | 
| 13 | 12 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) | 
| 14 | 13 | simpld 494 | . . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) | 
| 15 | 14 | elfzelzd 13566 | . . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℤ) | 
| 16 |  | elfzuz3 13562 | . . . . . . . . . . . . 13
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) | 
| 17 |  | fzss2 13605 | . . . . . . . . . . . . 13
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) | 
| 18 | 14, 16, 17 | 3syl 18 | . . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) | 
| 19 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝐼‘𝐶))) | 
| 20 | 18, 19 | sseldd 3983 | . . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) | 
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsdom 34515 | . . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) | 
| 22 | 20, 21 | syldan 591 | . . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) | 
| 23 | 22 | elfzelzd 13566 | . . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) | 
| 24 |  | fzsubel 13601 | . . . . . . . . 9
⊢ (((1
∈ ℤ ∧ (𝐼‘𝐶) ∈ ℤ) ∧ (((𝑆‘𝐶)‘𝐽) ∈ ℤ ∧ 1 ∈ ℤ))
→ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) ↔ (((𝑆‘𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼‘𝐶) − 1)))) | 
| 25 | 11, 15, 23, 11, 24 | syl22anc 838 | . . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) ↔ (((𝑆‘𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼‘𝐶) − 1)))) | 
| 26 | 10, 25 | mpbid 232 | . . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼‘𝐶) − 1))) | 
| 27 |  | 1m1e0 12339 | . . . . . . . 8
⊢ (1
− 1) = 0 | 
| 28 | 27 | oveq1i 7442 | . . . . . . 7
⊢ ((1
− 1)...((𝐼‘𝐶) − 1)) = (0...((𝐼‘𝐶) − 1)) | 
| 29 | 26, 28 | eleqtrdi 2850 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...((𝐼‘𝐶) − 1))) | 
| 30 | 12 | simpld 494 | . . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) | 
| 31 | 30 | elfzelzd 13566 | . . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) | 
| 32 |  | 1zzd 12650 | . . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℤ) | 
| 33 | 31, 32 | zsubcld 12729 | . . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ∈
ℤ) | 
| 34 |  | nnaddcl 12290 | . . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | 
| 35 | 1, 2, 34 | mp2an 692 | . . . . . . . . . . 11
⊢ (𝑀 + 𝑁) ∈ ℕ | 
| 36 | 35 | nnzi 12643 | . . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈ ℤ | 
| 37 | 36 | a1i 11 | . . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℤ) | 
| 38 |  | elfzle2 13569 | . . . . . . . . . . 11
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) | 
| 39 | 30, 38 | syl 17 | . . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) | 
| 40 |  | zlem1lt 12671 | . . . . . . . . . . . 12
⊢ (((𝐼‘𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁))) | 
| 41 | 31, 37, 40 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁))) | 
| 42 | 33 | zred 12724 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ∈
ℝ) | 
| 43 | 37 | zred 12724 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℝ) | 
| 44 |  | ltle 11350 | . . . . . . . . . . . 12
⊢ ((((𝐼‘𝐶) − 1) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → (((𝐼‘𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) | 
| 45 | 42, 43, 44 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝐼‘𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) | 
| 46 | 41, 45 | sylbid 240 | . . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) | 
| 47 | 39, 46 | mpd 15 | . . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁)) | 
| 48 |  | eluz2 12885 | . . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) ↔ (((𝐼‘𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) | 
| 49 | 33, 37, 47, 48 | syl3anbrc 1343 | . . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1))) | 
| 50 |  | fzss2 13605 | . . . . . . . 8
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) → (0...((𝐼‘𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁))) | 
| 51 | 49, 50 | syl 17 | . . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (0...((𝐼‘𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁))) | 
| 52 | 51 | sselda 3982 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...((𝐼‘𝐶) − 1))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) | 
| 53 | 29, 52 | syldan 591 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) | 
| 54 |  | ballotth.r | . . . . . 6
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | 
| 55 |  | ballotlemg | . . . . . 6
⊢  ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | 
| 56 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55 | ballotlemfg 34529 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = (𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1)))) | 
| 57 | 53, 56 | syldan 591 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = (𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1)))) | 
| 58 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55 | ballotlemfrc 34530 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) | 
| 59 | 57, 58 | oveq12d 7450 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = ((𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1))) + (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))))) | 
| 60 |  | fzsplit3 32796 | . . . . . 6
⊢ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) → (1...(𝐼‘𝐶)) = ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) | 
| 61 | 10, 60 | syl 17 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...(𝐼‘𝐶)) = ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) | 
| 62 | 61 | oveq2d 7448 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (1...(𝐼‘𝐶))) = (𝐶 ↑ ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))))) | 
| 63 |  | fz1ssfz0 13664 | . . . . . . . 8
⊢
(1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)) | 
| 64 | 63 | sseli 3978 | . . . . . . 7
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) | 
| 65 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55 | ballotlemfg 34529 | . . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) | 
| 66 | 64, 65 | sylan2 593 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) | 
| 67 | 14, 66 | syldan 591 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) | 
| 68 | 13 | simprd 495 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) | 
| 69 | 67, 68 | eqtr3d 2778 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (1...(𝐼‘𝐶))) = 0) | 
| 70 |  | fzfi 14014 | . . . . . . 7
⊢
(1...(𝑀 + 𝑁)) ∈ Fin | 
| 71 |  | eldifi 4130 | . . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | 
| 72 | 1, 2, 3 | ballotlemelo 34491 | . . . . . . . . 9
⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) | 
| 73 | 72 | simplbi 497 | . . . . . . . 8
⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) | 
| 74 | 71, 73 | syl 17 | . . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) | 
| 75 |  | ssfi 9214 | . . . . . . 7
⊢
(((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin) | 
| 76 | 70, 74, 75 | sylancr 587 | . . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ Fin) | 
| 77 | 76 | adantr 480 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ∈ Fin) | 
| 78 |  | fzfid 14015 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...(((𝑆‘𝐶)‘𝐽) − 1)) ∈ Fin) | 
| 79 |  | fzfid 14015 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∈ Fin) | 
| 80 | 23 | zred 12724 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ ℝ) | 
| 81 |  | ltm1 12110 | . . . . . 6
⊢ (((𝑆‘𝐶)‘𝐽) ∈ ℝ → (((𝑆‘𝐶)‘𝐽) − 1) < ((𝑆‘𝐶)‘𝐽)) | 
| 82 |  | fzdisj 13592 | . . . . . 6
⊢ ((((𝑆‘𝐶)‘𝐽) − 1) < ((𝑆‘𝐶)‘𝐽) → ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∩ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ∅) | 
| 83 | 80, 81, 82 | 3syl 18 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∩ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ∅) | 
| 84 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55, 77, 78, 79, 83 | ballotlemgun 34528 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) = ((𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1))) + (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))))) | 
| 85 | 62, 69, 84 | 3eqtr3rd 2785 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1))) + (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) = 0) | 
| 86 | 59, 85 | eqtrd 2776 | . 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = 0) | 
| 87 | 71 | adantr 480 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ∈ 𝑂) | 
| 88 | 23, 11 | zsubcld 12729 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈
ℤ) | 
| 89 | 1, 2, 3, 4, 5, 87,
88 | ballotlemfelz 34494 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ∈
ℤ) | 
| 90 | 89 | zcnd 12725 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ∈
ℂ) | 
| 91 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54 | ballotlemro 34526 | . . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) | 
| 92 | 91 | adantr 480 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑅‘𝐶) ∈ 𝑂) | 
| 93 | 19 | elfzelzd 13566 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) | 
| 94 | 1, 2, 3, 4, 5, 92,
93 | ballotlemfelz 34494 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℤ) | 
| 95 | 94 | zcnd 12725 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℂ) | 
| 96 |  | addeq0 11687 | . . 3
⊢ ((((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ∈ ℂ ∧ ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℂ) → ((((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽))) | 
| 97 | 90, 95, 96 | syl2anc 584 | . 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽))) | 
| 98 | 86, 97 | mpbid 232 | 1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽)) |