Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrceq Structured version   Visualization version   GIF version

Theorem ballotlemfrceq 33128
Description: Value of 𝐹 for a reverse counting (𝑅𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrceq ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝐽,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrceq
StepHypRef Expression
1 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
8 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsel1i 33112 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
11 1zzd 12534 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ∈ ℤ)
121, 2, 3, 4, 5, 6, 7, 8ballotlemiex 33101 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1413simpld 495 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1514elfzelzd 13442 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℤ)
16 elfzuz3 13438 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
17 fzss2 13481 . . . . . . . . . . . . 13 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
1814, 16, 173syl 18 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
19 simpr 485 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
2018, 19sseldd 3945 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
211, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 33111 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2220, 21syldan 591 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2322elfzelzd 13442 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
24 fzsubel 13477 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) ∧ (((𝑆𝐶)‘𝐽) ∈ ℤ ∧ 1 ∈ ℤ)) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2511, 15, 23, 11, 24syl22anc 837 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2610, 25mpbid 231 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1)))
27 1m1e0 12225 . . . . . . . 8 (1 − 1) = 0
2827oveq1i 7367 . . . . . . 7 ((1 − 1)...((𝐼𝐶) − 1)) = (0...((𝐼𝐶) − 1))
2926, 28eleqtrdi 2848 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1)))
3012simpld 495 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
3130elfzelzd 13442 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
32 1zzd 12534 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
3331, 32zsubcld 12612 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
34 nnaddcl 12176 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
351, 2, 34mp2an 690 . . . . . . . . . . 11 (𝑀 + 𝑁) ∈ ℕ
3635nnzi 12527 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℤ
3736a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
38 elfzle2 13445 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
3930, 38syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
40 zlem1lt 12555 . . . . . . . . . . . 12 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4131, 37, 40syl2anc 584 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4233zred 12607 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
4337zred 12607 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
44 ltle 11243 . . . . . . . . . . . 12 ((((𝐼𝐶) − 1) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4542, 43, 44syl2anc 584 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4641, 45sylbid 239 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4739, 46mpd 15 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
48 eluz2 12769 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ (((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4933, 37, 47, 48syl3anbrc 1343 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
50 fzss2 13481 . . . . . . . 8 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5149, 50syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5251sselda 3944 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
5329, 52syldan 591 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
54 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
55 ballotlemg . . . . . 6 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
561, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfg 33125 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
5753, 56syldan 591 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfrc 33126 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
5957, 58oveq12d 7375 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
60 fzsplit3 31697 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6110, 60syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6261oveq2d 7373 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
63 fz1ssfz0 13537 . . . . . . . 8 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
6463sseli 3940 . . . . . . 7 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ (0...(𝑀 + 𝑁)))
651, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfg 33125 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6664, 65sylan2 593 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6714, 66syldan 591 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6813simprd 496 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
6967, 68eqtr3d 2778 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = 0)
70 fzfi 13877 . . . . . . 7 (1...(𝑀 + 𝑁)) ∈ Fin
71 eldifi 4086 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
721, 2, 3ballotlemelo 33087 . . . . . . . . 9 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
7372simplbi 498 . . . . . . . 8 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
7471, 73syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
75 ssfi 9117 . . . . . . 7 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin)
7670, 74, 75sylancr 587 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ∈ Fin)
7776adantr 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ∈ Fin)
78 fzfid 13878 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(((𝑆𝐶)‘𝐽) − 1)) ∈ Fin)
79 fzfid 13878 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin)
8023zred 12607 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℝ)
81 ltm1 11997 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ ℝ → (((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽))
82 fzdisj 13468 . . . . . 6 ((((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
8380, 81, 823syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
841, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55, 77, 78, 79, 83ballotlemgun 33124 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
8562, 69, 843eqtr3rd 2785 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = 0)
8659, 85eqtrd 2776 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0)
8771adantr 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶𝑂)
8823, 11zsubcld 12612 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℤ)
891, 2, 3, 4, 5, 87, 88ballotlemfelz 33090 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℤ)
9089zcnd 12608 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ)
911, 2, 3, 4, 5, 6, 7, 8, 9, 54ballotlemro 33122 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
9291adantr 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
9319elfzelzd 13442 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
941, 2, 3, 4, 5, 92, 93ballotlemfelz 33090 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℤ)
9594zcnd 12608 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ)
96 addeq0 11578 . . 3 ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ ∧ ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
9790, 95, 96syl2anc 584 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
9886, 97mpbid 231 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  cima 5636  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  infcinf 9377  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  cz 12499  cuz 12763  ...cfz 13424  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-hash 14231
This theorem is referenced by:  ballotlemfrcn0  33129
  Copyright terms: Public domain W3C validator