Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrceq Structured version   Visualization version   GIF version

Theorem ballotlemfrceq 34181
Description: Value of 𝐹 for a reverse counting (𝑅𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrceq ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝐽,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrceq
StepHypRef Expression
1 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
8 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsel1i 34165 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
11 1zzd 12631 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ∈ ℤ)
121, 2, 3, 4, 5, 6, 7, 8ballotlemiex 34154 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312adantr 479 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1413simpld 493 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1514elfzelzd 13542 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℤ)
16 elfzuz3 13538 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
17 fzss2 13581 . . . . . . . . . . . . 13 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
1814, 16, 173syl 18 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
19 simpr 483 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
2018, 19sseldd 3983 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
211, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 34164 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2220, 21syldan 589 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2322elfzelzd 13542 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
24 fzsubel 13577 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) ∧ (((𝑆𝐶)‘𝐽) ∈ ℤ ∧ 1 ∈ ℤ)) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2511, 15, 23, 11, 24syl22anc 837 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2610, 25mpbid 231 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1)))
27 1m1e0 12322 . . . . . . . 8 (1 − 1) = 0
2827oveq1i 7436 . . . . . . 7 ((1 − 1)...((𝐼𝐶) − 1)) = (0...((𝐼𝐶) − 1))
2926, 28eleqtrdi 2839 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1)))
3012simpld 493 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
3130elfzelzd 13542 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
32 1zzd 12631 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
3331, 32zsubcld 12709 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
34 nnaddcl 12273 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
351, 2, 34mp2an 690 . . . . . . . . . . 11 (𝑀 + 𝑁) ∈ ℕ
3635nnzi 12624 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℤ
3736a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
38 elfzle2 13545 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
3930, 38syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
40 zlem1lt 12652 . . . . . . . . . . . 12 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4131, 37, 40syl2anc 582 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4233zred 12704 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
4337zred 12704 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
44 ltle 11340 . . . . . . . . . . . 12 ((((𝐼𝐶) − 1) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4542, 43, 44syl2anc 582 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4641, 45sylbid 239 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4739, 46mpd 15 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
48 eluz2 12866 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ (((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4933, 37, 47, 48syl3anbrc 1340 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
50 fzss2 13581 . . . . . . . 8 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5149, 50syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5251sselda 3982 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
5329, 52syldan 589 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
54 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
55 ballotlemg . . . . . 6 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
561, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfg 34178 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
5753, 56syldan 589 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfrc 34179 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
5957, 58oveq12d 7444 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
60 fzsplit3 32583 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6110, 60syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6261oveq2d 7442 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
63 fz1ssfz0 13637 . . . . . . . 8 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
6463sseli 3978 . . . . . . 7 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ (0...(𝑀 + 𝑁)))
651, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfg 34178 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6664, 65sylan2 591 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6714, 66syldan 589 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6813simprd 494 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
6967, 68eqtr3d 2770 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = 0)
70 fzfi 13977 . . . . . . 7 (1...(𝑀 + 𝑁)) ∈ Fin
71 eldifi 4127 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
721, 2, 3ballotlemelo 34140 . . . . . . . . 9 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
7372simplbi 496 . . . . . . . 8 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
7471, 73syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
75 ssfi 9204 . . . . . . 7 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin)
7670, 74, 75sylancr 585 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ∈ Fin)
7776adantr 479 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ∈ Fin)
78 fzfid 13978 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(((𝑆𝐶)‘𝐽) − 1)) ∈ Fin)
79 fzfid 13978 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin)
8023zred 12704 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℝ)
81 ltm1 12094 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ ℝ → (((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽))
82 fzdisj 13568 . . . . . 6 ((((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
8380, 81, 823syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
841, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55, 77, 78, 79, 83ballotlemgun 34177 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
8562, 69, 843eqtr3rd 2777 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = 0)
8659, 85eqtrd 2768 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0)
8771adantr 479 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶𝑂)
8823, 11zsubcld 12709 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℤ)
891, 2, 3, 4, 5, 87, 88ballotlemfelz 34143 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℤ)
9089zcnd 12705 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ)
911, 2, 3, 4, 5, 6, 7, 8, 9, 54ballotlemro 34175 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
9291adantr 479 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
9319elfzelzd 13542 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
941, 2, 3, 4, 5, 92, 93ballotlemfelz 34143 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℤ)
9594zcnd 12705 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ)
96 addeq0 11675 . . 3 ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ ∧ ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
9790, 95, 96syl2anc 582 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
9886, 97mpbid 231 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  {crab 3430  cdif 3946  cun 3947  cin 3948  wss 3949  c0 4326  ifcif 4532  𝒫 cpw 4606   class class class wbr 5152  cmpt 5235  cima 5685  cfv 6553  (class class class)co 7426  cmpo 7428  Fincfn 8970  infcinf 9472  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   < clt 11286  cle 11287  cmin 11482  -cneg 11483   / cdiv 11909  cn 12250  cz 12596  cuz 12860  ...cfz 13524  chash 14329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-hash 14330
This theorem is referenced by:  ballotlemfrcn0  34182
  Copyright terms: Public domain W3C validator