Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrceq Structured version   Visualization version   GIF version

Theorem ballotlemfrceq 34520
Description: Value of 𝐹 for a reverse counting (𝑅𝐶). (Contributed by Thierry Arnoux, 27-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrceq ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝐽,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrceq
StepHypRef Expression
1 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
8 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsel1i 34504 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)))
11 1zzd 12564 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ∈ ℤ)
121, 2, 3, 4, 5, 6, 7, 8ballotlemiex 34493 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1413simpld 494 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1514elfzelzd 13486 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℤ)
16 elfzuz3 13482 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
17 fzss2 13525 . . . . . . . . . . . . 13 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
1814, 16, 173syl 18 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
19 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
2018, 19sseldd 3947 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
211, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 34503 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2220, 21syldan 591 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
2322elfzelzd 13486 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℤ)
24 fzsubel 13521 . . . . . . . . 9 (((1 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) ∧ (((𝑆𝐶)‘𝐽) ∈ ℤ ∧ 1 ∈ ℤ)) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2511, 15, 23, 11, 24syl22anc 838 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1))))
2610, 25mpbid 232 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼𝐶) − 1)))
27 1m1e0 12258 . . . . . . . 8 (1 − 1) = 0
2827oveq1i 7397 . . . . . . 7 ((1 − 1)...((𝐼𝐶) − 1)) = (0...((𝐼𝐶) − 1))
2926, 28eleqtrdi 2838 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1)))
3012simpld 494 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
3130elfzelzd 13486 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
32 1zzd 12564 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
3331, 32zsubcld 12643 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
34 nnaddcl 12209 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
351, 2, 34mp2an 692 . . . . . . . . . . 11 (𝑀 + 𝑁) ∈ ℕ
3635nnzi 12557 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℤ
3736a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
38 elfzle2 13489 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
3930, 38syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
40 zlem1lt 12585 . . . . . . . . . . . 12 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4131, 37, 40syl2anc 584 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
4233zred 12638 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
4337zred 12638 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
44 ltle 11262 . . . . . . . . . . . 12 ((((𝐼𝐶) − 1) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4542, 43, 44syl2anc 584 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (((𝐼𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4641, 45sylbid 240 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4739, 46mpd 15 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
48 eluz2 12799 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ (((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
4933, 37, 47, 48syl3anbrc 1344 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
50 fzss2 13525 . . . . . . . 8 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5149, 50syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (0...((𝐼𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁)))
5251sselda 3946 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...((𝐼𝐶) − 1))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
5329, 52syldan 591 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁)))
54 ballotth.r . . . . . 6 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
55 ballotlemg . . . . . 6 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
561, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfg 34517 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (((𝑆𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
5753, 56syldan 591 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = (𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))))
581, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfrc 34518 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
5957, 58oveq12d 7405 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
60 fzsplit3 32716 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ (1...(𝐼𝐶)) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6110, 60syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(𝐼𝐶)) = ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
6261oveq2d 7403 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
63 fz1ssfz0 13584 . . . . . . . 8 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
6463sseli 3942 . . . . . . 7 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ (0...(𝑀 + 𝑁)))
651, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55ballotlemfg 34517 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6664, 65sylan2 593 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6714, 66syldan 591 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
6813simprd 495 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
6967, 68eqtr3d 2766 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (1...(𝐼𝐶))) = 0)
70 fzfi 13937 . . . . . . 7 (1...(𝑀 + 𝑁)) ∈ Fin
71 eldifi 4094 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
721, 2, 3ballotlemelo 34479 . . . . . . . . 9 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
7372simplbi 497 . . . . . . . 8 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
7471, 73syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
75 ssfi 9137 . . . . . . 7 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin)
7670, 74, 75sylancr 587 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ∈ Fin)
7776adantr 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ∈ Fin)
78 fzfid 13938 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...(((𝑆𝐶)‘𝐽) − 1)) ∈ Fin)
79 fzfid 13938 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin)
8023zred 12638 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) ∈ ℝ)
81 ltm1 12024 . . . . . 6 (((𝑆𝐶)‘𝐽) ∈ ℝ → (((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽))
82 fzdisj 13512 . . . . . 6 ((((𝑆𝐶)‘𝐽) − 1) < ((𝑆𝐶)‘𝐽) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
8380, 81, 823syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...(((𝑆𝐶)‘𝐽) − 1)) ∩ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ∅)
841, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55, 77, 78, 79, 83ballotlemgun 34516 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 ((1...(((𝑆𝐶)‘𝐽) − 1)) ∪ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))))
8562, 69, 843eqtr3rd 2773 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐶 (1...(((𝑆𝐶)‘𝐽) − 1))) + (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))) = 0)
8659, 85eqtrd 2764 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0)
8771adantr 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶𝑂)
8823, 11zsubcld 12643 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽) − 1) ∈ ℤ)
891, 2, 3, 4, 5, 87, 88ballotlemfelz 34482 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℤ)
9089zcnd 12639 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ)
911, 2, 3, 4, 5, 6, 7, 8, 9, 54ballotlemro 34514 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
9291adantr 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
9319elfzelzd 13486 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
941, 2, 3, 4, 5, 92, 93ballotlemfelz 34482 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℤ)
9594zcnd 12639 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ)
96 addeq0 11601 . . 3 ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) ∈ ℂ ∧ ((𝐹‘(𝑅𝐶))‘𝐽) ∈ ℂ) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
9790, 95, 96syl2anc 584 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅𝐶))‘𝐽)) = 0 ↔ ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽)))
9886, 97mpbid 232 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹𝐶)‘(((𝑆𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅𝐶))‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  cz 12529  cuz 12793  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-hash 14296
This theorem is referenced by:  ballotlemfrcn0  34521
  Copyright terms: Public domain W3C validator