Proof of Theorem ballotlemfrceq
Step | Hyp | Ref
| Expression |
1 | | ballotth.m |
. . . . . . . . 9
⊢ 𝑀 ∈ ℕ |
2 | | ballotth.n |
. . . . . . . . 9
⊢ 𝑁 ∈ ℕ |
3 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
4 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
5 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
6 | | ballotth.e |
. . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
7 | | ballotth.mgtn |
. . . . . . . . 9
⊢ 𝑁 < 𝑀 |
8 | | ballotth.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
9 | | ballotth.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsel1i 32379 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |
11 | | 1zzd 12281 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℤ) |
12 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 32368 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
14 | 13 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
15 | 14 | elfzelzd 13186 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℤ) |
16 | | elfzuz3 13182 |
. . . . . . . . . . . . 13
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
17 | | fzss2 13225 |
. . . . . . . . . . . . 13
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
18 | 14, 16, 17 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
19 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝐼‘𝐶))) |
20 | 18, 19 | sseldd 3918 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsdom 32378 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
22 | 20, 21 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
23 | 22 | elfzelzd 13186 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
24 | | fzsubel 13221 |
. . . . . . . . 9
⊢ (((1
∈ ℤ ∧ (𝐼‘𝐶) ∈ ℤ) ∧ (((𝑆‘𝐶)‘𝐽) ∈ ℤ ∧ 1 ∈ ℤ))
→ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) ↔ (((𝑆‘𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼‘𝐶) − 1)))) |
25 | 11, 15, 23, 11, 24 | syl22anc 835 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) ↔ (((𝑆‘𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼‘𝐶) − 1)))) |
26 | 10, 25 | mpbid 231 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ ((1 − 1)...((𝐼‘𝐶) − 1))) |
27 | | 1m1e0 11975 |
. . . . . . . 8
⊢ (1
− 1) = 0 |
28 | 27 | oveq1i 7265 |
. . . . . . 7
⊢ ((1
− 1)...((𝐼‘𝐶) − 1)) = (0...((𝐼‘𝐶) − 1)) |
29 | 26, 28 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...((𝐼‘𝐶) − 1))) |
30 | 12 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
31 | 30 | elfzelzd 13186 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
32 | | 1zzd 12281 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℤ) |
33 | 31, 32 | zsubcld 12360 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ∈
ℤ) |
34 | | nnaddcl 11926 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
35 | 1, 2, 34 | mp2an 688 |
. . . . . . . . . . 11
⊢ (𝑀 + 𝑁) ∈ ℕ |
36 | 35 | nnzi 12274 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈ ℤ |
37 | 36 | a1i 11 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℤ) |
38 | | elfzle2 13189 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
39 | 30, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
40 | | zlem1lt 12302 |
. . . . . . . . . . . 12
⊢ (((𝐼‘𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁))) |
41 | 31, 37, 40 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁))) |
42 | 33 | zred 12355 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ∈
ℝ) |
43 | 37 | zred 12355 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℝ) |
44 | | ltle 10994 |
. . . . . . . . . . . 12
⊢ ((((𝐼‘𝐶) − 1) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → (((𝐼‘𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) |
45 | 42, 43, 44 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝐼‘𝐶) − 1) < (𝑀 + 𝑁) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) |
46 | 41, 45 | sylbid 239 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) |
47 | 39, 46 | mpd 15 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁)) |
48 | | eluz2 12517 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) ↔ (((𝐼‘𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) |
49 | 33, 37, 47, 48 | syl3anbrc 1341 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1))) |
50 | | fzss2 13225 |
. . . . . . . 8
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) → (0...((𝐼‘𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁))) |
51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (0...((𝐼‘𝐶) − 1)) ⊆ (0...(𝑀 + 𝑁))) |
52 | 51 | sselda 3917 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...((𝐼‘𝐶) − 1))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) |
53 | 29, 52 | syldan 590 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) |
54 | | ballotth.r |
. . . . . 6
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
55 | | ballotlemg |
. . . . . 6
⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
56 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55 | ballotlemfg 32392 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (((𝑆‘𝐶)‘𝐽) − 1) ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = (𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1)))) |
57 | 53, 56 | syldan 590 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = (𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1)))) |
58 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55 | ballotlemfrc 32393 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) |
59 | 57, 58 | oveq12d 7273 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = ((𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1))) + (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))))) |
60 | | fzsplit3 31017 |
. . . . . 6
⊢ (((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶)) → (1...(𝐼‘𝐶)) = ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) |
61 | 10, 60 | syl 17 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...(𝐼‘𝐶)) = ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) |
62 | 61 | oveq2d 7271 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (1...(𝐼‘𝐶))) = (𝐶 ↑ ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))))) |
63 | | fz1ssfz0 13281 |
. . . . . . . 8
⊢
(1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)) |
64 | 63 | sseli 3913 |
. . . . . . 7
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) |
65 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55 | ballotlemfg 32392 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
66 | 64, 65 | sylan2 592 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
67 | 14, 66 | syldan 590 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = (𝐶 ↑ (1...(𝐼‘𝐶)))) |
68 | 13 | simprd 495 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
69 | 67, 68 | eqtr3d 2780 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (1...(𝐼‘𝐶))) = 0) |
70 | | fzfi 13620 |
. . . . . . 7
⊢
(1...(𝑀 + 𝑁)) ∈ Fin |
71 | | eldifi 4057 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) |
72 | 1, 2, 3 | ballotlemelo 32354 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
73 | 72 | simplbi 497 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
74 | 71, 73 | syl 17 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
75 | | ssfi 8918 |
. . . . . . 7
⊢
(((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin) |
76 | 70, 74, 75 | sylancr 586 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ Fin) |
77 | 76 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ∈ Fin) |
78 | | fzfid 13621 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...(((𝑆‘𝐶)‘𝐽) − 1)) ∈ Fin) |
79 | | fzfid 13621 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∈ Fin) |
80 | 23 | zred 12355 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ ℝ) |
81 | | ltm1 11747 |
. . . . . 6
⊢ (((𝑆‘𝐶)‘𝐽) ∈ ℝ → (((𝑆‘𝐶)‘𝐽) − 1) < ((𝑆‘𝐶)‘𝐽)) |
82 | | fzdisj 13212 |
. . . . . 6
⊢ ((((𝑆‘𝐶)‘𝐽) − 1) < ((𝑆‘𝐶)‘𝐽) → ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∩ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ∅) |
83 | 80, 81, 82 | 3syl 18 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∩ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ∅) |
84 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54,
55, 77, 78, 79, 83 | ballotlemgun 32391 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ ((1...(((𝑆‘𝐶)‘𝐽) − 1)) ∪ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) = ((𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1))) + (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))))) |
85 | 62, 69, 84 | 3eqtr3rd 2787 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐶 ↑ (1...(((𝑆‘𝐶)‘𝐽) − 1))) + (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) = 0) |
86 | 59, 85 | eqtrd 2778 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = 0) |
87 | 71 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ∈ 𝑂) |
88 | 23, 11 | zsubcld 12360 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽) − 1) ∈
ℤ) |
89 | 1, 2, 3, 4, 5, 87,
88 | ballotlemfelz 32357 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ∈
ℤ) |
90 | 89 | zcnd 12356 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ∈
ℂ) |
91 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 54 | ballotlemro 32389 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
92 | 91 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑅‘𝐶) ∈ 𝑂) |
93 | 19 | elfzelzd 13186 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
94 | 1, 2, 3, 4, 5, 92,
93 | ballotlemfelz 32357 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℤ) |
95 | 94 | zcnd 12356 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℂ) |
96 | | addeq0 11328 |
. . 3
⊢ ((((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) ∈ ℂ ∧ ((𝐹‘(𝑅‘𝐶))‘𝐽) ∈ ℂ) → ((((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽))) |
97 | 90, 95, 96 | syl2anc 583 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) + ((𝐹‘(𝑅‘𝐶))‘𝐽)) = 0 ↔ ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽))) |
98 | 86, 97 | mpbid 231 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘𝐶)‘(((𝑆‘𝐶)‘𝐽) − 1)) = -((𝐹‘(𝑅‘𝐶))‘𝐽)) |